Наличие универсальных закономерностей (как в области грамматики, так и в области «универсального словаря» — «мыслекода») объясняется, вероятно, тем фактом, что у всех людей много общих перцептивных, поведенческих, эмоциональных предрасположенностей27, а даже слабые предрасположенности, если они есть всегда, ведут к значительным последствиям28. Следует, впрочем, отметить, что универсальность этих закономерностей относительна: хотя они представлены во многих языках, но едва ли не для каждой из них можно найти такой язык, в котором она отсутствует29.
Что же касается мутации в гене FOXP2, то она в любом случае произошла задолго до «митохондриальной Евы» — такой же, как у нас, вариант этого гена был обнаружен у неандертальца30.
Вообще, следует отметить, что от гена и мутации в нем до внешнего (или, как говорят биологи, фенотипического) свойства — длинный путь. В клетке существуют специальные ферменты, которые исправляют ошибки, возникающие при копировании ДНК (так что в конечном счете остается примерно 1 ошибка на 10 млн. пар нуклеотидов)31. Многие из остающихся замен синонимичны: например, если в последовательности ЦЦТ заменить последний нуклеотид Т на А, Ц или Г, полученный триплет все равно будет кодировать ту же самую аминокислоту — глицин. Замена одной аминокислоты в белке может никак не повлиять на его функцию. Но даже в том случае, если мутация окажется значимой, другие гены, имеющиеся у организма, могут усилить или ослабить ее действие и даже полностью свести его на нет. Так, например, гиляцкие лайки — совершенно бесстрашные собаки, несмотря на то, что генетически они предрасположены к трусости. Их мало кому доводилось видеть испуганными, поскольку эти лайки очень маловозбудимы32 — их, как говорится, не проймешь. Генетические характеристики, обусловливающие малую возбудимость, блокируют проявление трусости. Таким образом, даже если предположить, что одна мутация вызвала у человека некую «предрасположенность» к языку, в отсутствие множества других изменений эта предрасположенность с большой вероятностью вовсе никак бы не проявилась.
У видов, использующих исключительно половое размножение, в каждом следующем поколении набор генов, которые могут влиять на внешнее проявление свойства, связанного с мутантным геном, будет изменяться, поскольку половина генетического материала достается организму от одного из родителей, а половина — от другого. И проявиться в виде фенотипического свойства может лишь та мутация, которой не помешает в этом вторая половина генома. Поэтому, например, у женщин — носительниц гемофилии внешних признаков этого заболевания не наблюдается: работа второй X-хромосомы, не затронутой мутацией, обеспечивает им в конечном итоге вполне удовлетворительный уровень свертываемости крови.
Усложняет связь между генами и фенотипическими характеристиками и тот факт, что новые свойства, отсутствовавшие у родителей, организм может получить не только в результате мутаций, но и в результате ненаследственных изменений — модификаций или морфозов. Например, попадание некоторых веществ в организм вполне генетически нормальной беременной женщины может повлечь развитие у плода врожденных уродств33. Дрозофила с четырьмя крыльями вместо двух может появиться не только вследствие мутации (вернее, двух мутаций — bithorax и postbithorax), но и том в случае, если на ранней личиночной стадии она попадет под воздействие эфира или высокой температуры34. Такое изменение не будет наследоваться, оно будет, как говорят биологи, фенокопией данной мутации (а сама мутация, соответственно, генокопией данного морфоза). Между внешними проявлениями мутаций и модификаций существует, как показал биолог-эволюционист Иван Иванович Шмальгаузен, глубокий параллелизм35, основанный на том, что набор белков, которые может синтезировать клетка, далеко не безграничен: чаще всего речь идет о том, что характерные для организма белки начинают синтезироваться с другой интенсивностью или в другие сроки, и именно этим определяется набор потенциально возможных отклонений от исходного фенотипа.
Роль внешней среды для формирования тех или иных внешних признаков нередко оказывается весьма существенной даже для тех организмов, которые обладают значительной автономностью развития: существуют некоторые элементы среды, которые полезно «заметить» для повышения приспособленности, и естественный отбор благоприятствует тем организмам, в чьем развитии заложена программа реагировать на них определенным образом. Например, такое свойство, как способность к импринтингу[37], полезно, поскольку оно позволяет птенцу выработать эффективную реакцию на конкретную особь — собственного родителя. Более того, в индивидуальном развитии (онтогенезе) существуют специальные чувствительные периоды, когда развивающийся организм наиболее восприимчив к воздействиям определенного типа. Есть чувствительный период и в усвоении языка (см. гл. 1). Если человек не овладел языком в этот период, он, скорее всего, уже не сможет стать полноценным носителем; «вероятные причины этого — возрастные изменения в мозге, такие как уменьшение уровня метаболизма и количества нейронов на протяжении младшего школьного возраста и достижение наименьшего количества синапсов и уровня метаболизма примерно в пубертатном возрасте»36.
Внешние по отношению к организму факторы могут существенно изменить проявления того, что закодировано в его генах. Например, добиться «пассивно-оборонительной» (по терминологии специалиста по поведению животных Леонида Викторовича Крушинского), т.е. трусливой, реакции от гиляцких лаек можно, если искусственно поднять уровень их возбудимости путем введения кокаина37. Под действием факторов внешней среды может изменяться в том числе устройство мозга — как уже говорилось в гл. 2, нейроны его коры могут перепрофилироваться. Если у младенца, еще не овладевшего языком, удалить все левое полушарие (такое иногда приходится делать по медицинским показаниям), он сможет впоследствии научиться говорить — языковые центры разовьются в сохранившемся правом38.
Более того, различные мутации при определенном подборе разных условий могут вызывать одинаковые внешние проявления. При изучении поведения лабораторных мышей было выяснено, что, например, разницу в уровне исследовательской активности у мышей двух различных линий можно нивелировать (и даже заменить на противоположную) путем введения некоторых фармакологических веществ39. Роберт Трайон вывел линии «умных» и «глупых» крыс — первые значительно быстрее, а вторые значительно медленнее обучаются находить пищу в 17-тупиковом лабиринте. Но в 16-тупиковом лабиринте крысы обеих линий демонстрируют одинаковые успехи40.
Таким образом, то, каким в итоге окажется человек (в том числе в аспекте владения языком), зависит от генов его родителей и их конкретной комбинации (например, от родителя, имеющего генетическую предрасположенность к SLI, ребенку может передаться не дефектный, а второй, нормальный вариант гена FOXP2), от характеристик цитоплазмы яйцеклетки (так называемый «материнский эффект» в узком смысле), от условий внутриутробного развития (например, употребление матерью алкоголя может крайне негативно сказаться на развитии мозга плода, что может помешать ему впоследствии успешно овладеть языком) и, наконец, от тех воздействий, которые окажет на него окружающая среда после рождения (например, сильный испуг может сделать человека заикой). Именно поэтому, кстати, при клонировании невозможно получить точную копию родителя — для этого пришлось бы воспроизвести в точности не только гены, но и все релевантные условия, регулирующие индивидуальное развитие. И именно поэтому, сколь бы умны ни были родители человека, сколь бы хорошо они ни владели языком, это не дает стопроцентной гарантии, что их потомки будут умными и красноречивыми.