Литмир - Электронная Библиотека
Содержание  
A
A

Фен Г: R = 3(2 + 4) + 1–0,01∙1700 = 19–17 = 2.

Наименьший рейтинг у фена Б, он равен 0.

Ответ: 0.

Задание 7. Анализ графиков и диаграмм

7.1. Общие вопросы

В спецификации контрольных измерительных материалов для проведения в 2024 году единого государственного экзамена по МАТЕМАТИКЕ (базовый уровень) в качестве проверяемого результата обучения применительно к заданию 7 указывается «умение оперировать понятиями: функция, непрерывная функция, производная, определять значение функции по значению аргумента; описывать по графику поведение и свойства функции».

Уровень сложности – базовый.

Максимальный балл за выполнение задания – 1.

Примерное время выполнения задания выпускником (мин.) – 7.

Чтобы решить задание 7 по математике базового уровня необходимо знать:

• что такое линейная функция и её график;

• что такое производная функции;

• геометрический смысл производной;

• как исследовать график функции.

Линейная функция

Линейная функция (прямая) имеет вид y = kx + b, где k – угловой коэффициент, который характеризует угол, который образует прямая y = kx + b положительным направлением оси Ох. Если k > 0, то этот угол острый; если k < 0, то – тупой; если k = 0, то прямая параллельна оси Ох или совпадает с ней.

Угловой коэффициент касательной равен тангенсу угла наклона касательной с положительным направлением оси абсцисс k = tg α, где α – угол наклона касательной.

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_032.png

Также для удобства составим таблицу, которая будет демонстрировать зависимость коэффициента k от угла наклона прямой:

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_033.png
Производная функции

Производной функции в точке называется предел отношения приращения функции к приращению аргумента, если приращение аргумента стремится к нулю и если этот предел существует

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_034.png
Геометрический смысл производной функции

Знание углового коэффициента касательной к графику функции позволяет ответить на некоторые вопросы при исследовании функции.

Значение производной функции y = f(x) в точке x0 равно угловому коэффициенту касательной, проведенной к графику функции в точке с абсциссой x0:

f'(x) = k.

Если производная функции y = f(x) в точке x0 равна нулю, то касательная, проведенная к графику этой функции в точке с абсциссой x0, параллельна оси абсцисс или совпадает с ней. Так как угловой коэффициент касательной равен тангенсу угла наклона касательной с положительным направлением оси абсцисс k = tg α, то

f'(x0 ) = tg α.

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_035.png
Исследование функции
Промежутки монотонности функции (промежутки возрастания и убывания функции)

Функция y = f(x) называется возрастающей на интервале (a;b), если для любых x1 и x2 из этого интервала таких, что x1 < x2, справедливо неравенство f(x1) < f(x2).

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_036.png

Функция y = f(x) называется убывающей на интервале (a;b), если для любых x1 и x2 из этого интервала таких, что x1 < x2, справедливо неравенство f(x1) > f(x2).

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_037.png
Точки экстремума (точки максимума и минимума функции)

Точка xmax области определения функции называется точкой максимума, если для всех x из некоторой окрестности этой точки справедливо неравенство f(x) < f(xmax). Значение ymax = f(xmax) называется максимумом этой функции.

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_038.png

Точка xmin области определения функции называется точкой минимума, если для всех x из некоторой окрестности этой точки справедливо неравенство f(x) > f(xmin). Значение ymax = f(xmin) называется минимумом этой функции.

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_039.png

7.2. Примеры заданий и методика их выполнения

Пример 1 [4]

Условие

На рисунках изображены графики функций вида y = kx + b. Установите соответствие между графиками функций и значениями их производной в точке x = 1.

ГРАФИКИ
Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_040.png
ЗНАЧЕНИЯ ПРОИЗВОДНОЙ

1) 0,75

2) –0,2

3) 3

4) –5

В таблице под каждой буквой укажите соответствующий номер.

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_010.png

Решение

Данное задание можно решить наглядно, найдя значение производной. Затем учесть, что оно равно угловому коэффициенту касательной, проведённой в этой точке. Так как угловой коэффициент касательной равен тангенсу угла наклона касательной с положительным направлением оси абсцисс k = tg α, то мы можем достроить все прямые до прямоугольного треугольника и найти тангенс угла наклона:

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_041.png

Так тангенс прямоугольного треугольника – это отношение противолежащего катета к прилежащему, найдем поочерёдно значение k для каждой из прямых:

А) k = 3/1 = 3, так как 45° < α < 90°, k < –1, следовательно k = 3

Б) k = 5/1 = 5, так как 90° < α < 135°, k < –1, следовательно k = –5

В) k = 3/3 = 0,75, так как 0° < α < 45°, k < –1, следовательно k = 0,75

Г) k = 1/5 = 0,2, так как 135° < α < 180°, – 1 < k < 0, следовательно k = –0,2

Заполним таблицу:

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_042.png

Ответ: 3412.

Пример 2 [3]

Условие

На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.

Пособие для подготовки к успешной сдаче ЕГЭ по математике базового уровня в 2024 году - i_043.png
5
{"b":"853818","o":1}