Определите по диаграмме наибольшую среднемесячную температуру в Нижнем Новгороде в период с января по апрель 1994 года. Ответ дайте в градусах Цельсия.
Решение
Аналогично предыдущему примеру выделим только нужную часть диаграммы (период с января по апрель).
Таким образом, на выделенной части диаграммы наибольшая среднемесячная температура в апреле. И она равна 6 градусов.
Ответ: 6.
Задание 4. Преобразования выражений. Действия с формулами
4.1. Общие вопросы
В спецификации контрольных измерительных материалов для проведения в 2024 году единого государственного экзамена по МАТЕМАТИКЕ (базовый уровень) в качестве проверяемого результата обучения применительно к заданию 4 указывается «умение выполнять вычисление значений и преобразования выражений, умение решать текстовые задачи разных типов».
Уровень сложности – базовый.
Максимальный балл за выполнение задания – 1.
Примерное время выполнения задания выпускником (мин.) – 4.
Чтобы решить задание 4 по математике базового уровня нужно уметь:
• подставлять данные значения в выражения,
• решать уравнения с одной неизвестной.
Решая некоторые примеры стоит обратить внимание на свойства арифметического квадратного корня и степеней, а также на таблицу квадратов целых чисел от 0 до 99 (они есть в справочных материалах, приложенных к КИМу).
Свойства арифметического квадратного корня
Свойства степеней
при a > 0,b > 0
Таблица квадратов целых чисел от 0 до 99
4.2. Примеры заданий и методика их выполнения
Пример 1 [3]
Условие
Мощность постоянного тока (в ваттах) вычисляется по формуле P = I2R, где I – сила тока (в амперах), R – сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 5 Ом и I = 7 А.
Решение
Подставим известные величины R = 5 Ом и I = 7 А в формулу P = I2R, и найдем P:
Ответ: 245.
Пример 2 [3]
Условие
Среднее геометрическое трёх чисел: a, b и c – вычисляется по формуле
. Вычислите среднее геометрическое чисел 5, 25 и 27.
Решение
Подставим известные величины a = 5, b = 25, c = 27 в формулу
, и найдем
g:
Ответ: 15.
Пример 3 [4]
Условие
Площадь четырёхугольника можно вычислить по формуле
, где
d1 и
d2 – длины диагоналей четырёхугольника,
α – угол между диагоналями. Пользуясь этой формулой, найдите площадь
S, если
d1 = 4,
d2 = 3 и sin
α = 5/6.
Решение
Подставим известные величины d1 = 4,d2 = 3 и sin α = 5/6 в формулу
, и найдем
S:
Ответ: 5.
Задание 5. Начала теории вероятностей
5.1. Общие вопросы
В спецификации контрольных измерительных материалов для проведения в 2024 году единого государственного экзамена по МАТЕМАТИКЕ (базовый уровень) в качестве проверяемого результата обучения применительно к заданию 5 указывается «умение вычислять в простейших случаях вероятности событий».
Уровень сложности – базовый.
Максимальный балл за выполнение задания – 1.
Примерное время выполнения задания выпускником (мин.) – 10.
Чтобы решить задание 5 по математике базового уровня необходимо знать:
• классическое определение вероятности,
• что такое противоположные события,
• определение несовместных событий,
• что такое пересечение несовместных событий.
Классическое определение вероятности
Вероятностью события A называется отношение числа благоприятных для A исходов к числу всех равновозможных исходов:
P(A) = m/n, где n – общее число равновозможных исходов, m – число исходов, благоприятствующих событию A.
Противоположные события
Событие, противоположное событию A, обозначают Ā. При проведении испытания всегда происходит ровно одно из двух противоположных событий и
P(A) + P(Ā) = 1; P(Ā) = 1–P(A).
Определение несовместных событий
Два события A и B называются несовместными, если отсутствуют исходы, благоприятные одновременно как событию A, так и событию B.
Событие C означает, что произошло хотя бы одно из событий A и B (пишут C = A∪B).
Если события A и B несовместны, то вероятность их объединения равна сумме вероятностей событий A и B:
Пересечение независимых событий
Два события A и B называются независимыми, если вероятность каждого из них не зависит от произойдет или не произойдет другое событие.
Событие C называют пересечение событий A и B (пишут C = A∩B), если событие C означает, что произошли оба события A и B.
Если события A и B независимы, то вероятность их пересечения равна произведению вероятностей событий A и B:
Определить из условия задачи необходимые величины.
Подставить значения и вычислить вероятность.
5.2. Примеры заданий и методика их выполнения
Пример 1 [3]
Условие
В чемпионате по прыжкам в воду участвуют 35 спортсменов: 7 из России, 12 из Китая, 9 из Японии и 7 из США. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из России.
Решение
В данной задаче применимо классическое определение теории вероятности. Таким образом, n = 35 (общее число равновозможных исходов), m = 7 (число исходов, благоприятствующих событию A), так как по условию и России учувствует 7 спортсменов. Следовательно, запишем решение задачи: