Литмир - Электронная Библиотека
Содержание  
A
A

Вернуться

280

Ferris J. P. et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature, vol. 381, pp. 59–61. 1996.

Вернуться

281

Лишенный остатка фосфорной кислоты нуклеотид носит название нуклеозид. По-видимому, это сходство названий призвано запутать и без того перегруженных терминологией научных журналистов.

Вернуться

282

Schwartz A. W., Orgel L. E. Template-directed synthesis of novel, nucleic acid-like structures. Science, vol. 228, iss. 4699, pp. 585–587. 1985.

Вернуться

283

Joyce G. F. et al. The case for an ancestral genetic system involving simple analogues of the nucleotides. PNAS, vol. 84, iss. 13, pp. 4398–4402. 1987.

Вернуться

284

Achilles T., von Kiedrowski G. A self-replicating system from three starting materials. Angewandte Chemie International Edition, vol. 32, iss. 8, pp. 1198–1201. 1993.

Вернуться

285

Sievers D., von Kiedrowski G. Self-replication of complementary nucleotide-based oligomers. Nature, vol. 369, pp. 221–224. 1994.

Вернуться

286

Nielsen P. E. et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, vol. 254, iss. 5037, pp. 1497–1500. 1991.

Вернуться

287

Wittung P. et al. DNA-like Double Helix formed by Peptide Nucleic Acid. Nature, vol. 368, iss. 6471, pp. 561–563. 1994.

Вернуться

288

Miller S. L. Peptide nucleic acids and prebiotic chemistry. Nature Structural Biology, vol. 4, iss. 3, pp. 167–169. 1997.

Вернуться

289

Nelson K. E. et al. Peptide nucleic acids rather than RNA may have been the first genetic molecule. PNAS, vol. 97, iss. 8, pp. 3868–3871. 2000.

Вернуться

290

Schöning K.-U. et al. Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl- (3→2’) Oligonucleotide System. Science, vol. 290, iss. 5495, pp. 1347–1351. 2000.

Вернуться

291

Yu H. et al. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nature Chemistry, vol. 4, pp. 183–187. 2012.

Вернуться

292

Видимо, в этом случае их следует назвать “треозимами”.

Вернуться

293

Yonath A. et al. Crystallization of the large ribosomal subunit from B. stearothermophilus. Biochemistry International, vol. 1, pp. 428–35. 1980.

Вернуться

294

Yonath A. et al. Some X-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. Journal of Molecular Biology, vol. 177, iss. 1, pp. 201–206. 1984.

Вернуться

295

Ban N. et al. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution. Science, vol. 289, iss. 5481, pp. 905–920. 2000.

Nissen P. et al. The Structural Basis of Ribosome Activity in Peptide Bond Synthesis. Science, vol. 289, iss. 5481, pp. 920–930. 2000.

Вернуться

296

Cech T. R. The ribosome is a ribozyme. Science, vol. 289, iss. 5481, pp. 878–879. 2000.

Вернуться

297

Schluenzen F. et al. Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution. Cell, vol. 102, iss. 5, pp. 615–623. 2000.

Wimberly B. T. et al. Structure of the 30S ribosomal subunit. Nature, vol. 407, pp. 327–339. 2000.

Вернуться

298

www.nobelprize.org/prizes/chemistry/2009/summary/

Вернуться

299

Kim D. E., Joyce G. F. Cross-catalytic replication of an RNA ligase ribozyme. Chemistry & Biology, vol. 11, iss. 11, pp. 1505–1512. 2004.

Lincoln T. A., Joyce G. F. Self-sustained replication of an RNA enzyme. Science, vol. 323, iss. 5918, pp. 1229–1232. 2009.

Вернуться

300

Bernhardt H. S. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct, vol. 7, pp. 23–37. 2012.

Вернуться

79
{"b":"851232","o":1}