Литмир - Электронная Библиотека
Содержание  
A
A

В 1933 году, продолжая преподавать в МЭИ, Котельников поступил на работу в НИИ связи Народного комиссариата связи (НИИС НКС). Связь на войне имеет первостепенное значение, поэтому неудивительно, что, захватив власть в октябре 1917 года, большевики в первый же день создали Народный комиссариат почт и телеграфов РСФСР, впоследствии преобразованный в НКС. Котельников, начав с должности инженера, со временем стал начальником собственной лаборатории связи, а впоследствии и целого института. Он всегда одной ногой стоял в академической башне из слоновой кости, а другой – в реальном мире политики и войн.

Фундаментальные идеи, изложенные в опубликованных работах, а также ответственная работа в двух престижных организациях давали возможность быстро продвигаться как в академических, так и в политических кругах. Как мы уже видели на примере Фурье, ни в той, ни в другой сфере нельзя избежать танцев с тиранами.

Цифровые и аналоговые бесконечности

Не будем стесняться слова бесконечность. На самом деле существует много разных видов бесконечности, но нам нужны только две: цифровая и аналоговая. Знакомая диаграмма (рис. 2.4) с секундной стрелкой часов поможет прояснить разницу.

Вы помните, что для каждого оборота, который совершает секундная стрелка, каждой минутной отметке на циферблате часов соответствует одна круглая черная точка на волне? По мере того как секундная стрелка движется по циферблату, точки бесконечно разворачиваются вправо. Сколько их? Ну, вы можете попытаться считать – раз, два, три и так далее, – но вам придется считать вечно. Это цифровая бесконечность. Последней точки нет, всегда можно добавить еще одну. Математики – по очевидной причине – называют это счетным множеством.

Пиксель. История одной точки - i_013.jpg

Рис. 2.4

Второй вид бесконечности – аналоговая бесконечность – не так прост. Рассмотрим две последовательные точки на волне. Сколько точек находится между этими точками? Ответ: их так много, что даже не сосчитать. Аналоговая бесконечность больше цифровой бесконечности, как бы странно это ни звучало. Математик Георг Кантор доказал, что это именно так, и вот как он это сделал.

Между любыми двумя точками на волне всегда есть еще одна точка. Теперь подумайте об этой средней точке и левой из двух исходных. Есть ли между ними еще одна точка? Конечно есть. Теперь повторите рассуждение для этой точки и левой из двух исходных. И так до бесконечности. Вы никогда не разделите отрезок между точками на такие мелкие части, чтобы дальнейшее деление стало невозможным. Другими словами, вы никогда не доберетесь до места, откуда получится сосчитать все точки. Математики предпочитают называть это неисчисляемой бесконечностью, но я буду придерживаться термина «аналоговая бесконечность». Оба понятия уместны: у непрерывных вещей аналоговое, или бесчисленное, множество частей, а количество частей у дискретных вещей исчисляется цифровой, или счетной, бесконечностью. По большому счету цифровое уступает аналоговому, даже если вы использовали очень много точек для представления гладкой кривой. Но великая идея Котельникова, похоже, заключается в том, что цифровое – вот так сюрприз! – эквивалентно аналоговому. При переходе на цифровые технологии ничего не теряется. Дискретный цифровой объект может быть точным представлением гладкого аналогового объекта.

На рис. 2.5 показан фрагмент звука или, скажем, визуальной сцены вдоль горизонтальной линии. Идея Котельникова работает в обоих случаях. Прямая линия внизу – нулевая громкость или нулевой уровень яркости, полная тишина или полная темнота. Кривая – это изменение громкости звука или изменение яркости визуальной сцены по мере того, как вы перемещаетесь вправо по линии. В любом случае мы отметим в исходном фрагменте черными зарубками точки, расположенные на одинаковом расстоянии друг от друга, – отсчеты. Мы начнем приходить к пониманию, отталкиваясь от этого одномерного примера, а затем постепенно перейдем к двум измерениям, необходимым для полной визуальной сцены. Точно так же мы поступили с волнами Фурье в первой главе.

Пиксель. История одной точки - i_014.jpg

Рис. 2.5

Рисунок 2.6 – это то, что вы получите, если удалите все точки на гладкой кривой, кроме тех, что отмечены черными зарубками. Между ними у нас есть только прямая линия нулевой громкости или нулевого уровня яркости. Нетрудно представить, как будет выглядеть двумерная версия. Представьте доску с гвоздями, забитыми на равных расстояниях по горизонтали и вертикали. Их высота варьируется в зависимости от яркости соответствующей гладкой поверхности – визуальной сцены. Везде, кроме мест, где расположены гвозди, высота поверхности будет нулевой.

Рисунок 2.5 – аналоговый, а рисунок 2.6 – цифровой. Вертикальные линии на втором называются отсчетами для аналоговой кривой – или выборкой. В случае доски с гвоздями для двумерной поверхности гвозди будут отсчетами соответствующей аналоговой поверхности. Замечательная теорема Котельникова гласит, что нам не нужна сама гладкая кривая для представления звука или сама гладкая поверхность для представления визуальной сцены. Нам нужны только отсчеты. Другими словами, на аналоговую бесконечность точек между отмеченными на первом рисунке черными зарубками можно не обращать внимания! Кажется, он говорит, что ничто может представлять нечто. Как такое возможно? Ответ кроется, конечно же, в слове «кажется».

Вы можете вообразить, что, если просто сделать очень-очень много отсчетов и разместить их достаточно близко друг к другу, они станут аналоговой звуковой кривой. У многих людей есть такое же интуитивное представление, что пиксели – какими бы они ни были, – расположенные достаточно близко друг к другу, станут соответствующей визуальной сценой. Но такое предположение ошибочно. Вы не можете достичь достаточно близкого расположения. Невозможно заставить цифровую бесконечность достичь плотности аналоговой бесконечности. Нельзя сосчитать неисчислимое. Но Котельников, кажется, говорит, что можно. Тогда как же это сделать?

Более того, его теорема гласит, что точки, показанные на втором рисунке, уже расположены достаточно близко друг к другу, то есть вы не получите ни преимуществ, ни дополнительной информации, взяв отсчеты, расположенные еще ближе. Вы все еще в недоумении? Я надеюсь на это, потому что сейчас я раскрою суть вопроса и продемонстрирую элегантность его идеи.

Итак, с этими витающими в воздухе вопросами мы уже почти готовы подступиться к великой идее Котельникова. Но сначала вернемся к идее Фурье, поскольку теорема Котельникова базируется на ней. Фурье научил нас, что звук или изображение могут быть представлены как сумма волн. На рисунке 2.7 показана одна из волн, которые дают в сумме аналоговый фрагмент, использованный мной в качестве примера и для удобства изображенный сверху (места отсчетов обозначены точками). Вы можете увидеть, что в этом фрагменте нет колебаний вверх или вниз более быстрых, чем на волне, поэтому можно считать, что у нее самая высокая частота. Все остальные волны в сумме волн Фурье для этого фрагмента обладают более низкими частотами, иначе мы бы увидели где-то в этом фрагменте более быстрое колебание.

Перейдем к сути замечательной идеи Котельникова: если вы делаете отсчеты некоей гладкой аналоговой кривой с удвоенной частотой самой высокой частоты волн Фурье из составляющей ее суммы, то вы всегда сможете точно восстановить обратно эту гладкую кривую, используя только сделанную выборку. Отсчеты дискретные, разрозненные, отделенные друг от друга – определенно не гладкие. Это первая часть его идеи, великая теорема отсчетов – та часть, в которой утверждается, что аналоговую гладкость можно заменить цифровой несвязностью. Во второй части рассказывается, как выполнить фактическое восстановление исходного аналогового сигнала из цифровых отсчетов.

14
{"b":"840435","o":1}