Литмир - Электронная Библиотека

Порядок из хаоса - img_53

Рис. 37. Временная эволюция неустойчивой системы. Область А со временем делится на две области A' и А", каждая из которых в свою очередь делится на две подобласти.

Другим примером простой системы с неожиданно сложным поведением может служить рассеяние твердых шаров. Рассмотрим маленький шарик, отражающийся от больших случайно распределенных шаров. Предположим, что большие шары неподвижны. Такую модель физики называют моделью, или газом, Лоренца в честь выдающегося голландского физика Гендрика Антона Лоренца.

Порядок из хаоса - img_54

Рис. 38. Схематическое изображение неустойчивости траектории маленького шарика, отражающегося от больших шаров. Малейшая неточность в задании положения маленького шарика делает невозможным предсказание большого шара, с которым столкнется маленький шарик после первого отражения.

Траектория малого подвижного шарика вполне определена. Но стоит лишь нам ввести в начальные условия небольшую неопределенность, как в результате последовательных столкновений эта неопределенность усилится. Со временем вероятность найти малый шарик равномерно распределится по всему объему, занятому газом Лоренца. Каково бы ни было число преобразований, газ никогда не вернется в исходное состояние.

В двух последних примерах динамические системы были сильно неустойчивы. Ситуация, с которой мы сталкиваемся здесь, напоминает неустойчивости в термодинамических системах (см. гл. 5). Произвольно малые различия в начальных условиях усиливаются. В результате переход от ансамблей в фазовом пространстве к индивидуальным траекториям становится невозможным. Описание на языке теории ансамблей мы вынуждены принять за исходный пункт. Статистические понятия перестают быть лишь приближениями к некоторой «объективной истине». Перед такими неустойчивыми системами демон Лапласа оказался бы столь же бессильным, как и мы.

Высказывание Эйнштейна «бог не играет в кости» хорошо известно. Ему созвучно высказывание Пуанкаре о бесконечно мощном духе, беспредельно осведомленном в законах природы, для которого вероятности просто не могли бы существовать. Однако Пуанкаре сам же указал путь к решению проблемы[227]. Он заметил, что когда мы бросаем игральные кости и прибегаем к теории вероятностей, то это отнюдь не означает, будто динамика неверна. Применение вероятностных соображений означает нечто другое. Мы используем понятие вероятности потому, что в любом диапазоне начальных условий, сколь бы малым он ни был, существует «много» траекторий, приводящих к выпадению каждой из граней кости. Именно это и происходит с неустойчивыми динамическими системами. Господь бог, если бы пожелал, мог бы вычислить траектории в нестабильном динамическом мире. При этом он получил бы тот же результат, который нам позволяет получить теория вероятностей. Разумеется, всеведущему богу с его абсолютным знанием было бы нетрудно избавиться от всякой случайности.

Итак, мы можем констатировать, что тесная взаимосвязь между неустойчивостью и вероятностью, несомненно, существует. Это весьма важное обстоятельство, и к его обсуждению мы сейчас перейдем.

5. От случайности к необратимости

Рассмотрим последовательность квадратов, на которые действует «преобразование пекаря». Эта последовательность изображена на рис. 39. Представим себе, что заштрихованные области заполнены чернилами, а незаштрихованные — водой. При t=0 мы имеем так называемое производящее разбиение квадрата. Приняв его за исходное, мы построим серию разбиений либо на горизонтальные полосы, если отправимся в будущее, либо на вертикальные полосы, если начнем двигаться в прошлое. В обоих случаях мы получим базисные разбиения. Произвольное распределение чернил по квадрату формально представимо в виде суперпозиции базисных разбиений. Каждому базисному распределению можно поставить в соответствие внутреннее время, равное просто числу «преобразований пекаря», которые необходимо проделать, чтобы перейти от производящего распределения к данному[228]. Следовательно, системы такого типа допускают своего рода внутренний возраст[229].

Порядок из хаоса - img_55

Рис. 39. Начав с «производящего разбиения» (см. текст) в момент времени 0 и многократно повторив «преобразование пекаря», мы получили горизонтальные полосы. Двигаясь в прошлое, мы получили бы вертикальные полосы.

Внутреннее время Т сильно отличается от обычного механического времени, поскольку зависит от глобальной топологии системы. Можно даже говорить об «овременивании» пространства, тем самым вплотную приближаясь к идеям, недавно выдвинутым географами, которые ввели понятие хроногеографии[230]. Взглянув на «структуру города или ландшафта, мы видим временные элементы как взаимосвязанные и сосуществующие. Бразилиа или Помпеи[231] вполне соответствовали бы определенному внутреннему возрасту, в какой-то мере аналогичному одному из базисных разбиений в «преобразовании пекаря». Наоборот, современный Рим с его зданиями, построенными в самые различные периоды, соответствовал бы среднему времени точно так же, как произвольное разбиение разложимо на элементы, отвечающие различным внутренним временам.

Посмотрим еще раз на рис. 39. Что произойдет, если мы продвинемся далеко в будущее? Зазоры между горизонтальными чернильными полосами будут становиться все уже и уже. Какова бы ни была точность наших измерений, спустя некоторое время она будет превзойдена, и мы заключим, что чернила равномерно распределены по всему объему. Неудивительно поэтому, что такого рода приближение к «равновесию» можно описать с помощью стохастических процессов типа цепей Маркова, о которых мы упоминали в гл. 8. Недавно это утверждение было доказано со всей математической строгостью[232], но сам по себе результат представляется вполне естественным. Со временем чернила равномерно распределяются по объему так же, как шары в модели Эренфестов равномерно распределялись по урнам (см. гл. 8). Но если мы заглянем в прошлое, снова начав с производящего разбиения при t=0, то увидим то же самое явление. Чернила будут распределяться вертикальными полосами, и снова, углубившись в прошлое достаточно далеко, мы обнаружим равномерное распределение чернил по объему. Это позволяет нам сделать вывод о том, что и этот процесс допускает описание с помощью цепи Маркова, но направленной в прошлое. Таким образом, из неустойчивых динамических процессов мы получаем две цепи Маркова: одну, стремящуюся к равновесию в будущем, другую — в прошлом. Мы считаем, что этот результат весьма интересен, и хотели бы его прокомментировать. Внутреннее время дает нам новое, «нелокальное» описание.

Хотя «возраст» системы (т. е. соответствующее разбиение) нам известен, мы тем не менее не можем сопоставить ему однозначно определенную локальную траекторию. Мы знаем лишь, что система находится где-то в заштрихованной части квадрата (см. рис. 39). Аналогичным образом, если известны точные начальные условия, соответствующие какой-то точке системы, то мы не знаем ни разбиения, которому она принадлежит, ни возраста системы. Следовательно, для таких систем существуют два взаимодополнительных описания. Ситуация здесь несколько напоминает ту, с которой мы уже встречались в гл. 7 при рассмотрении квантовой механики.

Существование новой альтернативы — нелокального описания — открывает перед нами путь к переходу от динамики к вероятностям. Системы, для которых такой переход возможен, мы называем внутренне случайными системами.

В классических детерминистических системах мы можем говорить о вероятностях перехода из одной точки в другую лишь в весьма вырожденном смысле: вероятность перехода равна единице, если две точки лежат на одной динамической траектории, и нулю, если они не лежат на одной траектории.

78
{"b":"838434","o":1}