Литмир - Электронная Библиотека

В настоящей вероятностной теории нам понадобятся вероятности, принимающие, к отличие от вероятностей типа «нуль—единица», любые значения от пуля до единицы. Как такое возможно? Здесь перед нами во весь рост встает конфликт между субъективистскими взглядами на вероятность и ее объективными интерпретациями. Субъективная интерпретация соответствует случаю, когда отдельные траектории неизвестны. Вероятность (и в конечном счете связанная с ней необратимость) при таком подходе имеет своим истоком наше незнание. К счастью, существует другая, объективная интерпретация: вероятность возникает в результате альтернативного описания динамики, нелокального описания, возможного лишь для сильно неустойчивых динамических систем.

При таком подходе вероятность становится объективным свойством, порождаемым, так сказать, внутри динамики и отражающим фундаментальную структуру динамической системы. Мы уже подчеркивали важность основного открытия Больцмана — установления связи между энтропией и вероятностью. Для внутренне случайных систем понятие вероятности обретает динамический смысл. Теперь нам необходимо совершить переход от внутренне случайных систем к необратимым системам. Как мы уже знаем, неустойчивые динамические процессы порождают по две цепи Маркова.

Взглянем на эту двойственность с другой точки зрения. Рассмотрим распределение, сосредоточенное не на всей поверхности квадрата, а на отрезке прямой. Отрезок может быть вертикальным или горизонтальным. Выясним, что произойдет с этим отрезком под действием «преобразований пекаря», обращенных в будущее. Результат их показан на рис. 40: вертикальный отрезок рассекается на части и в далеком будущем стягивается в точку. Наоборот, горизонтальный отрезок при каждом «преобразовании пекаря» удваивается, и в далеком будущем его образы («копии») равномерно покроют весь квадрат. Ясно, что при движении вспять во времени (в прошлое) наблюдается обратная картина. По очевидным причинам вертикальный отрезок называется сжимающимся, а горизонтальный — растягивающимся слоем.

Порядок из хаоса - img_56

Рис. 40. Сжатие и растяжение слоев при «преобразовании пекаря». Со временем сжимающийся слой А1 сокращается (последовательные этапы сокращения обозначены А1, В1, C1). Растягивающиеся слои удваиваются (последовательные этапы удвоения обозначены А2, В2, С2).

Мы видим, что аналогия с теорией бифуркаций полная. Сжимающийся слой и растягивающийся слой соответствуют двум реализациям динамики, каждая из которых связана с нарушением симметрии и появлением несимметричных режимов парами. Сжимающийся слой отвечает равновесному состоянию в далеком будущем, растягивающийся — в далеком прошлом. Мы получаем, таким образом, две цепи Маркова с противоположной ориентацией во времени.

Теперь нам необходимо совершить переход от внутренне случайных систем к системам внутренне необратимым. Для этого нам необходимо понять, чем, собственно, отличается сжимающийся слой от растягивающегося. Нам известна еще одна система, столь же неустойчивая, как и «преобразование пекаря», — система, описывающая рассеяние твердых шаров. Для этой системы растягивающиеся и сжимающиеся слои имеют простой физический смысл. Сжимающийся слой соответствует множеству твердых шаров, скорости которых случайным образом распределены в далеком прошлом и становятся параллельными в далеком будущем. Растягивающийся слой соответствует обратной ситуации: скорости сначала параллельны, а затем их распределение становится случайным. Различие между сжимающимися и растягивающимися слоями очень напоминает различие между расходящимися и сходящимися волнами в примере Поппера. Исключение сжимающихся слоев соответствует экспериментально установленному факту: как бы ни изощрял свое хитроумие экспериментатор, ему никогда не удастся добиться, чтобы скорости в системе оставались параллельными после произвольного числа столкновений. Исключая сжимающиеся слои, мы оставляем тем самым лишь одну из двух введенных нами цепей Маркова. Иначе говоря, второе начало становится принципом отбора начальных условий. Оно допускает лишь такие начальные условия, при которых система эволюционирует к равновесному состоянию в будущем.

Правильность такого принципа отбора подтверждается динамикой. Нетрудно видеть, что в примере с «преобразованием пекаря» сжимающийся слой навсегда остается сжимающимся, а растягивающийся — растягивающимся. Подавляя одну из двух цепей Маркова, мы переходим от внутренне случайной к внутренне необратимой системе. В описании необратимости мы выделяем три основных элемента:

Порядок из хаоса - img_57

Самым сильным из них является внутренняя необратимость: случайность и неустойчивость следуют из него[233].

Каким образом подобный вывод можно совместить с динамикой? Как известно, в динамике «информация» сохраняется, в то время как цепи Маркова, забывая предысторию, утрачивают информацию (вследствие чего энтропия возрастает; см. гл. 8). Никакого противоречия здесь нет: когда от динамического описания «преобразования пекаря» мы переходим к термодинамическому описанию, нам приходится изменять функцию распределения. Связано это с тем, что «объекты», в терминах которых энтропия возрастает, отличаются от объектов, рассматриваемых в динамике. Новая функция распределения r соответствует внутренне ориентированному во времени описанию динамической системы. Мы не можем останавливаться на математических аспектах перехода от старой функции распределения к новой. Скажем лишь, что преобразование, переводящее одну функцию распределения в другую, должно быть неканоническим (см. гл. 2). Следовательно, прийти к термодинамическому описанию мы можем лишь ценой отказа от обычных понятий динамики.

Примечательно, что такое преобразование существует, в результате чего оказывается возможным объединить динамику и термодинамику, физику бытия и физику становления. Позднее в этой главе и в заключительном разделе книги мы еще вернемся к новым термодинамическим объектам. Подчеркнем лишь, что в состоянии равновесия всякий раз, когда энтропия достигает своего максимума, эти объекты должны вести себя случайным образом.

Заслуживает внимания и то, что необратимость возникает, так сказать, из неустойчивости, наделяющей наше описание неустранимыми статистическими особенностями. Действительно, что означала бы стрела времени в детерминистическом мире, в котором и прошлое и будущее содержатся в настоящем? Стрела времени ассоциируется с переходом из настоящего в будущее именно потому, что будущее не содержится в настоящем и мы совершаем переход из настоящего в будущее. Построение необратимости на основе случайности чревато многими последствиями, выходящими за рамки собственно естествознания. Этих последствий мы коснемся в заключительном разделе нашей книги, а теперь кратко поясним, в чем заключается различие между состояниями, разрешенными вторым началом, и состояниями, которые второе начало запрещает.

6. Энтропийный барьер

Время течет в одном направлении: из прошлого в будущее. Мы не можем манипулировать со временем, заставить его идти вспять, в прошлое. Путешествие во времени занимало воображения многих писателей: от безымянных создателей «Тысячи и одной ночи» до Герберта Уэллса с его «Машиной времени». В небольшом произведении В. Набокова «Посмотри на арлекинов!»[234] описываются муки рассказчика, которому не удается переключиться с одного направления времени на другое, чтобы «повернуть время вспять». В пятом томе своего капитального труда «Наука и цивилизация в Китае» Джозеф Нидэм описывает мечту китайским алхимиков: «свою высшую цель те видели не в превращении металлов в золото, а в манипулировании временем, достижении бессмертия путем резкого замедления всех процессов распада в природе[235]. Теперь мы лучше понимаем, почему время невозможно «повернуть назад».

79
{"b":"838434","o":1}