Литмир - Электронная Библиотека
A
A

Алмазную лампочку сделать Болтону не удалось. К тому же скоро Эдисон ввел в употребление нить накаливания из угля (близко, не правда ли?). Но статья о странном поведении алмазной нити в атмосфере метана в 1908 году появилась в печати.

Большого интереса она не вызвала. Кому и зачем могла в то время понадобиться алмазная нить?

Несколько лет тому назад член-корреспондент Академии наук Борис Владимирович Дерягин, с которым читатель еще встретится на этих страницах, рассказал мне, как один его знакомый взял статью Болтона — ту самую, чуть не столетней давности, — и в точности повторил описанный в ней эксперимент. И алмазная нить у него тоже прибыла в весе.

Тоже Уроборос.

Не знаю, пытались ли воспроизвести опыт Болтона в Институте кристаллографии. Кажется, не пытались. Но о статье солидного немца Шубников не знать не мог — она была упомянута Лейпунским в «Успехах химии». И это конечно же был аргумент в пользу попыток получить алмаз в обычном лабораторном аппарате, без вулканических давлений, чреватых небывалыми экспериментальными трудностями.

А еще одним аргументом могла быть, повторяю, загадка Хэннея.

Читатель уже знает, как отреагировали на Муассана сообщники (сочлены по Минералогическому обществу) Константина Дмитриевича Хрущова. И сам Хрущов. Они спокойно проглотили пилюлю. Первые так первые, вторые так вторые. Российская наука амбициозностью не отличалась.

Но едва известие об алмазах Анри Муассана достигло меловых утесов Дувра, как в Британии начался настоящий переполох — островитяне ревниво воспринимали научные успехи французов.

Вскоре было объявлено, что искусственные алмазы были получены задолго до Муассана. Шотландцем Хэннеем. И что каждый, пожелавший в этом убедиться, может посетить минералогический отдел Британского музея в Южном Кенсингтоне. Там выставлена на всеобщее обозрение ровно дюжина рукотворных алмазов, изготовленных в 1880 году.

Согласно оставшимся от тех времен скупым сведениям, Хэнней делал свои алмазы так. Брал ружейные стволы. Набивал их костяным маслом. Заклепывал с обоих концов. Грел до белого каления.

Из восьмидесяти стволов нечто замечательное оказалось в двух или трех — маленькие, в долю миллиметра, но все же благородные кристаллики.

Правда, Хэнней не скрывал, что в некоторые стволы он подкладывал («ставил на зарод») натуральные алмазные песчинки. Но утверждал, что в те стволы, откуда были извлечены камешки, переданные затем в музей, затравку не клали.

В этом Хэннею верили. Сомнения были в другом: действительно ли алмазы — эти алмазы?

Дело в том, что опыты Хэннея были многократно повторены известным английским заводчиком и изобретателем Чарльзом Парсонсом, человеком весьма основательным — изобретенные им паровые турбины до сих пор исправно нарабатывают нам электрический ток. Парсонс не прочь был организовать и производство алмазов. Чтоб их получилось побольше, он брал не только ружейные стволы, но и пушечные. И как назло — хоть бы какой завалящий алмазик. Ни одного!

Знатоки порешили так: шотландец принял за алмазы какие-нибудь корунды либо шпинели. И взяли термин «алмазы Хэннея» в кавычки. На том все и успокоилось.

Спокойствие нарушила г-жа Кетлин Лонсдейл, известный английский физик. В 1942 году, в разгар войны, ей захотелось сделать рентгеновские снимки «алмазов Хэннея».

Время было неподходящее, немцы бомбили Лондон, бомбы падали и в том районе, где находился музей, в одной из витрин которого хранился загадочный экспонат. Но все же настойчивость ученой леди и ее авторитет взяли свое — она получила музейное сокровище, привезла в лабораторию, сделала снимки и удостоверилась, что… 11 кристаллов из 12 были настоящими алмазами.

В середине семидесятых годов, когда в лабораторном обиходе появились ядерный магнитный резонанс, электронный парамагнитный резонанс, активационный анализ и другие методы тончайшего исследования веществ, физики снова попросили дирекцию Британского музея дать им на проверку теперь уже раскавыченные и потому еще более загадочные кристаллики.

Новые методы анализа позволяли обнаруживать мельчайшие примеси, по которым можно отличить не только натуральный алмаз от искусственного, но и алмаз одного месторождения от камня, добытого в другом, и даже два разных камня, добытые в одном и том же месторождении. Было даже предложение составить своего рода дактилоскопическое досье на все особо ценные камни, чтобы можно было опознать похищенные, а затем разрезанные или переграненные бриллианты.

Итак хэннеевские алмазы снова легли на лабораторные столы. И равнодушные к славе народов приборы засвидетельствовали подлог. Камешки оказались натуральными, из Южной Африки.

Но это, повторяю, произошло всего несколько лет назад. В сороковые же и в пятидесятые годы алмазики из Британского музея все еще можно было считать искусственными. И думать, что, следовательно, и без чрезмерных давлений атомы углерода могут сложиться в алмаз.

7

Опыт выращивания кварца и корунда, лабораторный журнал Ломоносова, эксперимент Болтона, алмазы Хэннея, — все это отошло на задний план и даже на время вовсе исчезло с научного горизонта, как только швед Лундблад, а вслед за ним американцы Холл, Стронг, Банди, Уинторф получили алмазный порошок в прессе.

В прессе — то есть «наиболее простым и естественным методом».

Алмазный порошок — то есть вещество, заполняющее 80 процентов алмазного фонда, потребного цивилизации во второй половине XX века.

Беседа с Верещагиным. Продолжение

— А что Шубников?

— Шубников сказал: «Пусть Верещагин сделает нам оборудование для синтеза». Я говорю: «Кто достанет лошадь, может и сам ездить на ней». После совещания было подготовлено такое решение: алмазы — Шубникову, а мне боразон.

Небольшое пояснение. Когда американцы сделали из графита алмаз, один из участников этой работы, Уинторф, задался таким вопросом: а нет ли еще каких-нибудь веществ, построенных так же, как графит? Если есть, то почему бы не засунуть его туда же, куда они засовывали графит, и не поглядеть, не получится ли какой-нибудь неалмазный алмаз? А вдруг получится?

Идея была из числа безусловно красивых и очень увлекательных. Уинторф бросился искать неграфитовый графит. Сперва он, естественно, обратился к той группе Менделеевской таблицы, в которой находится углерод. Однако ни кремний, ни германий, ни олово, ни свинец ни во что сходное с графитом не складывались.

Тогда Уинторф стал перебирать не простые тела, а сложные, составленные из атомов не одного, а двух элементов. И быстро нашел то, что ему было нужно. Соседи углерода, стоящие в Менделеевской таблице один справа, а другой слева от него, — бор и азот, оказывается, образовывали точно такую же постройку, как графит.

На вид нитрид бора — так называлось это графитоподобное вещество — оказался невзрачным, вроде талька, порошком. Но это Уинторфа ни капельки не смутило. Он насыпал его в точно такую же камеру, в какую раньше помещал графит и железо. Нагрел. Сдавил. И, вскрыв камеру, обнаружил в ней небольшие, но очень симпатичные оранжевые кристаллики.

Сделали рентгеновский снимок — алмаз, да и только, все атомы в кристаллической решетке расположены совершенно так же.

Попробовали царапать корунд — царапает.

Дальнейшие исследования выявили у нового вещества два очень ценных для человека свойства: высокую кислородоустойчивость и высокую железоустойчивость. Оно не горит в кислороде и при 2000 градусов, тогда как алмаз горит при 800. И режет, как масло, любую сталь, тогда как алмазный резец при соприкосновении со сталью тут же разрушается.

Неалмазный, боразоновый алмаз назвали кубическим нитридом бора, или, сокращенно, КНБ.

Вот какое прекрасное вещество собирались поручить Верещагину, оставив за Шубниковым алмаз. И тем не менее это предложение выглядело несколько странно. Ведь американцы и алмаз и КНБ получили на одном и том же оборудовании, в котором-то и была главная загвоздка. А прежде всего она была в камере высокого давления, в реакторе, который обязан был не плавиться при нескольких тысячах градусов и не разрушаться при сотнях тысяч атмосфер. Каждый квадратный сантиметр которого должен был выдерживать нагрузку, равную весу груженого железнодорожного вагона!

41
{"b":"833688","o":1}