Литмир - Электронная Библиотека
Содержание  
A
A

Энергия на образование паровой влаги (испарение) расходуется на водных поверхностях, а высвобождается при конденсации в атмосфере. Преобразование и задержка расхода теплоты парообразования в атмосфере в основном и создает ей тепловое преимущество, именуемое парниковым эффектом. На пути следования атмосфера неоднократно освобождается от водяного пара и вновь его приобретает.

И тут надо заметить, что тепло, высвобождающееся в высоких слоях атмосферы при конденсации пара, не может «обогревать» земную поверхность, поскольку конденсация и сублимация пара чаще происходит при температуре более низкой, чем имеет её земная (водная, ледяная) поверхность и направляется оно, главным образом, в космическое пространство длинноволновым излучением. Но поток этого тепла, к тому же чаще идущий из облачного покрова, компенсационно сдерживает примерно идентичное длинноволновое излучение самой земной поверхности, то есть «экономит» ее тепло, что при балансируемом приходе – расходе тепла в теплообмене земной поверхности с Солнцем и космосом равнозначно ее эквивалентному нагреванию. Поэтому высвобождающуюся теплоту парообразования в атмосфере условно, но допустимо в каком-то приближении отождествлять с приходом тепла к земной поверхности.

Допустим, в порядке «разведки боем», гипотетическое толкование сути однонаправленной атмосферной циркуляции и новый взгляд на роль воздушных масс в переносе ими тепла, мы получили неожиданную возможность наглядно сопоставить различия в теплообеспеченности высоких широт Земли с другими климатическими зонами.

2.3. Насколько на полюсах «холоднее», чем на экваторе?

Если этим вопросом кто-то и задавался, то ответа на него получить не мог по той простой причине, что люди еще не знают, как определить количество тепла на том или ином участке Земли. Странно? Определить энергию невидимого атома можем, а участка Земли, на которой стоим не можем. В лучшем случае оперируем лишь показателями термометров.

Но что такое температура? Она не характеризует количества тепла. Это всего лишь соразмерность, свидетельствующая о физическом состоянии среды. Это как напряжение в электрической сети, ничего ещё не говорящее о количестве электрической энергии. Подключите к автомобильной системе зажигания с напряжением в 30 000 вольт электрочайник, и он даже не нагревается. Но хороший автомобильный аккумулятор, напряжением всего в 12 вольт, успешно вскипятит чай. Значит, несмотря на очень большое напряжение в системе зажигания, энергии в низковольтном аккумуляторе оказывается намного больше. Так и температура мало что говорит о количестве тепла.

Однако по средней, сколько-то постоянной температуре внешней среды, зная удельную теплоёмкость какой-то массы и характер теплообмена с ней, можно определить, сколько тепла накопила или потеряла эта масса за определенный интервал времени при данной, воздействующей на неё, температуре внешней среды. Полагаясь на привычную шкалу температур Цельсия, количество воздействующих «тепла» или «холода» в этом случае становится возможным выражать суммами градусо-суток положительной или отрицательной температуры. Например, если температура минус 10 °C удерживается в атмосфере 10 суток, то условная сумма «холода» составит 100 градусо-суток отрицательной температуры. По сумме отрицательных температур с начала образования льда на водоёме, пользуясь известной эмпирической формулой Стефана, можно довольно точно определить толщину намерзающего льда, не измеряя её. А это значит, что по удельной теплоте фазового превращения воды в лёд становится возможным установить и конкретную величину теплового воздействия «холода» атмосферы на этот процесс, выраженную в калориях или джоулях. Таким же путём агрономы определяют количество «тепла», необходимого для развития растений до той или иной стадии.

Сейчас уже накоплено множество данных, чтобы суммами градусо-суток положительной или отрицательной температуры определять среднее за год тепловое состояние любого участка земной поверхности. Принимая, например, что средняя годовая температура в приэкваториальных широтах над водой океанов составляет около плюс 23 °C, на северном полюсе минус 19 °C, а в центре Антарктиды минус 50 °C, находим, что суммы градусо-суток температуры за год составляют:

Дерзкие мысли о климате - i_003.png

Теперь мы можем сколько угодно вглядываться в эти цифры и раздумывать над ними, но всё равно не сможем ответить на вопрос – на сколько же на полюсах холоднее, чем на экваторе. А все потому, что мы пока не имеем для таких сравнений необходимой системы и правил отсчета.

Замечу, что введение в произведение суммы «тепла», как и «холода», температуры не всегда оказываются корректными, поскольку в телах (особенно твердых) температура распространяется с затухающей по глубине интенсивностью, то есть не линейно.

Это не вносит принципиальных изменений в рассуждения о том, где и во сколько раз оказывается тепла меньше, а где больше.

А пока суть да дело, попробуем всё же самостоятельно найти ответ на слегка измененный вопрос: насколько же полюса Земли хуже обеспечиваются теплом, чем экваториальные области?

Мы уже нашли, что с учетом отражения солнечной радиации северная полярная область получает тепла в 16 раз, а южная в 25 меньше, чем экватор. Нашли, что вращающаяся вдоль широт атмосфера отнюдь не способна активно обменивать тепло между экватором и полюсами. И всё-таки это самый активный переносчик энергии и надо бы уточнить, чем он одаривает студеные приполюсные пространства.

Здесь мы воспользуемся подсказкой Г. Н. Витвицкого (1980) в его книге «Зональность климата Земли». Он заметил, что «поле осадков служит важным источником информации о скрытой теплоте конденсации».

В атмосфере водяной пар конденсируется в результате охлаждения. При конденсации каждого грамма пара в виде аэрозоля или дождя высвобождается около 600 кал (2 500 Дж) тепла, а при конденсации и сублимации снега 680 кал (2 800 Дж).

Важно заметить, что высвобождение теплоты конденсации пара в атмосфере не может не отзываться на тепловом состоянии земной поверхности, над которой она совершается, поскольку количество выпадающих осадков в какой-то мере свидетельствует о количестве выделившейся в атмосфере теплоты.

Сложнее определить, над каким конкретно участком земной поверхности происходит конденсация пара, а над каким выпадают осадки, ибо вроде бы уже сконденсировавшаяся влага (аэрозоль), в тех же областях, может перемещаться с атмосферой на значительные расстояния.

Но можно заметить, а далее будут приведены факты, подтверждающие это, что компенсация тепла от земной поверхности атмосферой для каждой данной местности близко характеризуется количеством выпадающих здесь же осадков. Почему происходит именно так, ещё предстоит разобраться, но коли об этом свидетельствуют факты, игнорировать их нельзя, тем более, что заведомо известна неизбежность возвращения всего атмосферного пара снова на земную поверхность в виде осадков.

В таком случае снова считаем. Вблизи северного полюса при среднем количестве твердых, приведенных к плотности воды, осадков в 150 мм в атмосфере высвобождается более 10 ккал/см2 год (42,6 кДж) тепла. Вроде бы не так уж мало. У В. Н. Степанова в книге «Океаносфера» (1983) находим, что «между 10° северной и южной широт выпадает около 20 % всех осадков, приходящихся на акваторию Мирового океана». Их среднеширотная величина достигает 1500…2500 мм/год. Берем среднюю – 2000 мм/год, получаем: 200×600 =120 ккал/см год (500 кДж). Оказывается, что земная атмосфера сохраняет тепла приэкваториальной области в 12 раз больше, чем северной приполюсной.

Следовательно, околополюсное пространство северного полушария получает тепла меньше, чем приэкваториальная область: от Солнца в 16 раз и от атмосферы ещё в 12 раз меньше. А в конечном счете северное приполюсное пространство обеспечивается теплом приблизительно в 190 раз хуже, чем приэкваториальные области. Когда просчитал то же для центра Антарктиды, где осадков выпадает всего 50 мм в год, то оказалось, что этот ледяной материк обеспечивается теплом уже в 1000 раз хуже, чем экватор!

10
{"b":"782789","o":1}