Литмир - Электронная Библиотека
Содержание  
A
A

Наибольшую известность получила гипотеза, еще в начале дискуссии выдвинутая Крутценом и Стормером, которые приурочили начало антропоцена к периоду промышленной революции, то есть 1760–1880 годам. Хотя мы наблюдаем гораздо более ранние геологические признаки загрязнений в результате внедрения техник, необходимых для производства таких металлов, как медь и ртуть, именно промышленная революция стала несомненной причиной резкого скачка уровня CO2 в атмосфере. На это указывают донные отложения озер и морей. Однако промышленная революция складывалась из множества медленных изменений, которые носили диахронический характер и последствия которых стали очевидны лишь в XIX веке. А значит, у нас нет однозначного геологического маркера, свидетельствующего о том, что антропоцен начался именно в этот период.

Таким маркером можно было бы считать радиоактивные осадки223. Тогда началом антропоцена оказался бы период, начавшийся после Второй мировой войны и получивший название «великого ускорения». В этот период эксплуатация природных ресурсов достигла огромного, невиданного доселе темпа и размаха. 16 июля 1945 года в пустыне в Нью-Мексико была сброшена первая атомная бомба. Следы радиоактивных веществ, оставшихся после ядерных испытаний 1950‐х и 1960‐х годов, можно с уверенностью назвать антропогенным фактором, вызвавшим глобальные изменения в стратиграфических слоях – озерных донных отложениях и почве224. В 1945–1989 годах было проведено около двух тысяч ядерных испытаний225. Углерод-14, радиоактивный изотоп углерода, можно обнаружить непосредственно при оценке состава воздуха, а также в слоях льда и стволах деревьев. Максимальные показатели количества углерода-14 зафиксированы в 1964 году. Это объективный геологический маркер синхронического порядка и глобального масштаба. Однако недостаток данного критерия заключается в том, что использование радиации не вызвало на планете таких изменений, как сельское хозяйство или индустриализация.

«Великое ускорение» как начало антропоцена: формирование науки о Земле как системе

Однозначно ответить на вопрос о начале антропоцена мы сможем лишь тогда, когда учтем положения новой научной дисциплины – науки о Земле как системе. Изучение Земли как целостной планетарной системы и ее биогеохимических циклов стало возможным по большому счету лишь в 80‐е годы ХХ века – благодаря новой научной аппаратуре, спутниковым сетям и совершенствованию компьютеров. Мы получаем все более полную картину своего рода метаболизма Земли за счет начатого еще в 1990‐е годы бурения все более глубоких скважин на исследовательских станциях в Антарктиде и Гренландии. Благодаря им мы сейчас располагаем данными, позволяющими заглянуть на целых 800 тысяч лет назад.

В 2001 году под эгидой Программы ООН по окружающей среде был учрежден проект «Оценка экосистем на пороге тысячелетия» (ОЭ). Его цель состояла в том, чтобы оценить влияние человека на мировые экосистемы. В частности, ОЭ выявила тревожный процесс утраты биологического разнообразия, серьезные изменения, касающиеся круговорота азота и фосфора в природе, и резкий рост объемов расхода питьевой воды226.

Еще раньше, в 1986 году, была основана Международная геосферно-биосферная программа (МГБП) со штаб-квартирой в Стокгольме. В рамках этой программы около пятисот исследователей провели анализ различных систем Земли. Результатом стал опубликованный в 2004 году и получивший широкий резонанс отчет «Глобальные изменения и Земля как система. Планета под давлением» (Global Change and the Earth System. A Planet Under Pressure)227. В нем было отмечено, что человек уже изменил облик более чем пятидесяти процентов суши. Говорилось, что человек напрямую или опосредованно использует более пятидесяти процентов питьевой воды, имеющейся на планете. 22 процента известных нам районов рыболовного промысла уничтожено или истощено, а еще 44 процента находятся на грани опустошения. Выяснилось, что человек искусственным образом производит больше азота для сельскохозяйственных нужд, чем вырабатывают все экосистемы Земли228.

В работе «Антропоцен как разрыв» (The Anthropocene as Rupture) Хэмилтон утверждает, что лишь в свете новой дисциплины, какой является развивающаяся с 1990‐х годов междисциплинарная наука о Земле как системе, можно увидеть огромное значение идеи антропоцена229. Я склонна с ним согласиться. Зарождение такой дисциплины – революция, возвещающая формирование новой парадигмы в нашем осмыслении окружающей среды. Это холистическая метанаука о планете как сложной системе, которая эволюционирует по нелинейному сценарию. Она объединяет науки о живых организмах и науки о Земле, учитывая и промышленный метаболизм человечества. Только исследования различных систем Земли позволили выявить глобальное, систематическое влияние человека на планету, рассматриваемую как единое целое. Оказалось, что происходящие в современную эпоху изменения беспрецедентны по своим темпам, глубине и размаху230.

Наука о Земле как системе указывает на произошедший недавно в истории Земли серьезный перелом, причиной которого стало все более интенсивное вмешательство человека в экологию в масштабах всей планеты. Земля при этом понимается не как набор разрозненных, обособленных друг от друга экосистем, а как динамичное целое отношений и влияний, в которых участвуют также Солнце и Луна. В настоящее время мы располагаем свидетельствами, подтверждающими коэволюцию гидросферы, атмосферы и литосферы. В этом плане наука о Земле как системе вытесняет экологию, изучающую экосистемы, то есть региональные и локальные явления. Даже категорию окружающей среды уже нельзя считать вполне удовлетворительной, потому что спектр ее значений намного беднее, чем понятие Земли как системы231.

Важным толчком к созданию науки о Земле как системе послужили доклады Римского клуба, а также работы британского биолога и эколога Джеймса Лавлока и американского биолога Линн Маргулис232. Начиная с 1970‐х годов эти авторы последовательно развивали идею процессов саморегуляции на планете, понимаемой как органическое целое. Их концепции эволюционировали с распространением новых моделей биосферы в 1980‐х годах и публикацией ряда научных работ о климатических изменениях233. Гипотеза Геи, выдвинутая Лавлоком и Маргулис, изначально гласила, что благодаря многочисленным внутренним взаимосвязям биосфера активно создает и поддерживает уникальные геофизиологические условия, делающие возможной жизнь на Земле. Эта жизнь рассматривалась как свойство планеты, а не отдельных организмов. Такой взгляд принято называть сильной версией гипотезы или «оптимизирующей Геей».

Но в настоящее время наука уже отвергла ранние теории Лавлока, согласно которым планета активно стремится к равновесию благодаря эффективно функционирующим в любых условиях механизмам стабилизации234. Скорее речь идет о глубинной взаимозависимости, которая является результатом коэволюции органической жизни и геологических, атмосферных, гидрологических условий. Растянутый во времени процесс коэволюции привел к тому, что температура, химический состав воды в Мировом океане и атмосферы «подстроились» под живые организмы – и наоборот. Такую концепцию – слабую версию гипотезы, известную как «коэволюция Геи», – науки о Земле как системе принимают.

вернуться

223

На роль подходящих маркеров «великого ускорения» могли бы претендовать также изотопы олова, микропластик в Мировом океане и даже пыльца генно-модифицированных растений. В таком контексте принято говорить о «техноископаемых» (англ. technofossils). К ним относятся пластик, бетон и другие получаемые промышленным способом материалы.

вернуться

224

Zalasiewicz J. et al. Are We Now Living in the Anthropocene?; ср. Borowski M., Sugiera M. Postscriptum. Spory o antropocen // Borowski M., Sugiera M. Sztuczne natury. Performance technonauki i sztuki. Kraków: Księgarnia Akademicka, 2016. S. 481.

вернуться

225

См. Schwägerl C. The Anthropocene. P. 71.

вернуться

226

Считается, что около 70 процентов ресурсов питьевой воды потребляет сельское хозяйство.

вернуться

227

Steffen W. et al. Global Change and the Earth System. A Planet Under Pressure. Stockholm: Springer, IGBP Secretariat, 2004. См. http://www.igbp.net.

вернуться

228

Кроме того, мы потеряли уже 20 процентов всех коралловых рифов, а еще 20 процентам нанесен серьезный ущерб. Angus I. Facing the Anthropocene. P. 35–46. За последние тридцать лет Большой Барьерный риф утратил половину кораллового покрова, а коралловый покров рифов у берегов Карибских островов сократился почти на 80 процентов. В последнем случае дополнительной причиной стала бактериальная инфекция, которую называют «белой чумой». Kolbert E. The Sixth Extinction. P. 107.

вернуться

229

Hamilton C. The Anthropocene as Rupture.

вернуться

230

См. Angus I. Facing the Anthropocene. P. 29–32.

вернуться

231

Hamilton C. Defiant Earth. P. 12. Тем не менее в книге в силу устоявшейся языковой традиции я буду и дальше пользоваться терминами «окружающая среда» и «изучение окружающей среды».

вернуться

232

См. Lovelock J. Gaia. New York: Oxford University Press, 2000; Lovelock J. The Revenge of Gaia. Earth’s Climate Crisis and the Fate of Humanity. New York: Basic Books, 2006; Lovelock J. The Vanishing Face of Gaia. A Final Warning. New York: Basic Books, 2009; Margulis L. The Symbiotic Planet. A New Look at the Evolution. London: Phoenix, 1999.

вернуться

233

См. Crist E., Rinker B. H. One Grand Organic Whole // Crist E., Rinker B. H. Gaia in Turmoil. Climate Change, Biodepletion, and Earth Ethics in the Age of Crisis. Cambridge, MA, London: The MIT Press, 2010. P. 4 n.

вернуться

234

На это, в частности, указывает Изабель Стенгерс в работе «Принимая реальность Геи» (Accepting the Reality of Gaia). Stengers I. Accepting the Reality of Gaia // Hamilton Clive, Bonneuil C., Gemenne F. (ed.). The Anthropocene and the Global Environmental Crisis. Rethinking Modernity in a New Epoch. London, New York: Routledge, 2015. P. 134–144. По словам Стенгерс, в той мере, в какой гипотеза Геи говорит об оптимизации и стабилизации, ее не следует принимать на веру: существующие на планете системы необязательно всегда возвращаются к прежнему состоянию равновесия.

19
{"b":"762288","o":1}