Литмир - Электронная Библиотека
A
A

Распознавание злокачественных заболеваний на коже или органах человека. Одним из самых полезных применений ИИ – это медицина. С помощью ГО и нейронных сетей компьютеры сегодня могут распознавать злокачественные опухоли еще на ранней стадии и даже лучше, чем опытные доктора. Это хорошо еще и тем, что пациент, находящийся в одной точке земного шара, может переслать свои снимки в лабораторию в другой стране для принятия решения. Предсказывается, что в будущем роботы с помощью ИИ будут выполнять все больше и больше сложных операций без участия человека.

Еще одним популярным применением ГО являются так называемые рекомендательные системы: когда при покупке одного товара нам предлагают другой. Наверное, вы видели, когда на сайте появляется фраза: «с этим товаром часто покупают». Или при просмотре фильма, или книги на сайте агрегаторе, вам начинают предлагать фильмы и книги похожей категории или те фильмы, которые смотрели пользователи, похожие на вас по различным параметрам. Все это алгоритмы ИИ, подкрепленные НС.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - _8.jpg

И в конце, на что еще хотелось бы обратить внимание. Как уже было сказано, и ГО и МО являются только частью более общей области под названием ИИ. Так вот, в сложных проектах, как правило, присутствует несколько видов алгоритмов ИИ, и глубокое обучение и машинное обучение, и другие виды. Например, во время движения беспилотного автомобиля участвует более 100 различных алгоритмов, которые ответственны за распознавание объектов, управление движением, навигацию, безопасность, и т.д.

Как вы заметили по приведенным примерам, ИИ уже используется во многих областях в нашей повседневной жизни. Считается, что в ближайшие пару десятилетий ИИ будет использоваться большинством компаний и охватывать большую часть нашей жизнедеятельности.

Основные задачи и методы машинного обучения

Обучение с учителем и обучение без учителя

Если вы интересовались темой искусственного интеллекта и машинного обучения, возможно вы уже встречались с такими понятиями как обучение с учителем (на англ. supervised learning) и обучение без учителя (unsupervised learning). В этой главе мы узнаем, чем отличаются эти два понятия.

Во-первых, они оба являются видами машинного обучения.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - _9.jpg

Во-вторых, обучение с учителем не обязательно подразумевает, что кто-то стоит над компьютером и контролирует каждое его действие. В терминах машинного обучения, обучение с «учителем» означает, что человек уже подготовил данные для дальнейшей работы над ними компьютером, то есть у каждого объекта имеется метка (на англ. label) которая выделяет этот объект от остальных объектов или дает ему какое-то именное или числовое наименование. И компьютеру остается только найти закономерности между признаками объектов и их наименованиями, основываясь на этих подготовленных или как их называют помеченных данных. На английском такие данные называются labeled data.

Обучение с учителем включает два основных типа задач: регрессия и классификация. Давайте посмотрим на типичный пример задачи классификации.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - _10.jpg

Это будет пример цветков ириса Фишера. Этот набор данных стал уже классическим, и часто используется для иллюстрации работы различных статистических алгоритмов. Вы можете найти его по следующей ссылке (https://gist.github.com/curran/a08a1080b88344b0c8a7) либо просто вбив в интернете.

В природе существует три вида цветков ириса. Они отличаются друг от друга размерами лепестка и чашелистника. Все данные по цветкам занесены в таблицу, в столбиках указаны длина и ширина лепестка, а также длина и ширина чашелистника. В последнем столбце указан вид ириса –  Ирис щетинистый (Iris setosa), Ирис виргинский (Iris virginica) и Ирис разноцветный (Iris versicolor). Тот или иной вид ириса и является в нашем случае меткой.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - _11.jpg

На основании этого набора данных требуется построить правило классификации, определяющее вид растения в зависимости от размеров. Это задача многоклассовой классификации, так как имеется три класса – три вида ириса.

В данном случае с помощью алгоритма классификации, мы разделяем наши ирисы на три вида в зависимости от длины и ширины лепестка и чашелистника. В следующий раз, если нам попадется новый представитель ирисов, с помощью нашей модели мы сможем сразу же его поместить в тот или иной из трех классов.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - _12.jpg

Почему этот пример можно считать обучение с учителем? Потому что наши данные распределены по признакам, у каждого признака есть показатель для конкретного цветка, то есть размеры длины и ширины. И имеются ответы или метки, какой вид ириса бывает при тех или иных размерах лепестка и чашелистника. То есть мы как учитель обучаем нашу модель и говорим ей, что вот окей, если ты видишь, что размер лепестка такой-то, а чашелистника – такой, то этой ирис виргинский, а если размеры такие-то и такие-то, то это ирис разноцветный. Это и называется обучение с учителем, когда мы показываем нашей модели все ответы в зависимости от признаков. Модель учится на этих данных, и создает формулу или алгоритм, который поможет нам в будущем предсказывать вид цветка в зависимости от размеров, когда нам будут поступать новые образцы цветов.

Кроме задач классификации, о которой мы только что говорили в примере с ирисами, есть еще один вид машинного обучения с учителем. Это регрессия.

Если в задачах классификации мы имеем несколько классов объектов, то в задачах регрессии, у нас один класс, но каждый объект отличается от другого и нам надо предсказать какой будет числовой показатель того или иного признака каждого объекта в зависимости от других его признаков и опять же на основании набора данных, которые мы предоставим нашему компьютеру.

Искусственный интеллект и Машинное обучение. Основы программирования на Python - _13.jpg

Классический пример регрессии – это когда мы предсказываем цену квартиры в зависимости от ее площади.

Опять же мы имеем какую-то таблицу с данными разных квартир. В одном столбце площадь, а в другом – цены на эти квартиры. Это очень упрощенный пример регрессии, естественно, что цена квартиры будет зависеть от множества других факторов, но все же он наглядно демонстрирует, что такое регрессия. Так вот, в последнем столбце мы расположили фактические или реальные цены на квартиры с таким метражом. То есть, мы как учитель, показываем нашей модели, что вот, если видишь, что метраж такой-то, то цена будет такая-то и т.д. На основе этих данных модель учится, и потом выдает алгоритм, на основе которого мы можем предсказывать, какая будет цена квартиры, если условная площадь будет такая-то.

5
{"b":"694704","o":1}