Литмир - Электронная Библиотека
A
A

Эти определения приводятся в «Началах» Евклида. Мне не очень нравится, что при подобном подходе многие числа попадают одновременно в два различных вида. Например, 8=2·4=2·2·2, 12=2·6=3·4=2·2·3, 18=2·9=3·6=2·3·3 и так далее.

Критерии – геометрическая интерпретация

Многоугольные числа – числа, ассоциированные с определённым многоугольником, которые соответствовали количеству точек, расположенных в виде некоторой геометрической фигуры – треугольника, квадрата и так далее. Про точки может быть не совсем корректно говорить, так как в математике точка – это абстрактное понятие, не имеющее линейных размеров, поэтому будем подразумевать некие круглые фишки одинаковых размеров, из которых и выкладываются геометрические фигуры. Ряд фигур будем начинать с одной фишки, а затем достраиваем до равностороннего треугольника со стороной в две фишки, в три фишки и так далее.

Натуральные числа. Этюды, вариации, упражнения - _7.jpg

Получаем треугольные числа: 1, 3, 6, 10, 15, 21, 28, 36, 45, … . Треугольные числа можно получить и без геометрической интерпретации посредством последовательного суммирования чисел натурального ряда: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15, … . Формула для получения n-го треугольного числа: Pn(3)=(n(n+1))/2. Сумма двух последовательных треугольных чисел дает полный квадрат: Pn(3)+Pn+1(3)=(n+1)2. Четность элементов последовательности меняется с периодом 4: нечетное, нечетное, четное, четное.

Извините, формулы получаются написанными коряво, так как конвертер издательства не принимает и не распознает формулы, красиво сделанные во встроенном редакторе формул, и приходится изощряться, чтобы написать их в Worde просто с клавиатуры. В результате остается только изображение в строчку, красота формулы теряется.

Получение квадратных чисел можно иллюстрировать построением квадратов с последовательным увеличением длины стороны квадрата: 1, 4, 9, 16, 25, 36, 49, … .

Натуральные числа. Этюды, вариации, упражнения - _8.jpg

С алгебраической точки зрения они представляют собой квадраты чисел натурального ряда, но могут быть интерпретированы и как результат последовательного суммирования нечетных чисел натурального ряда: 1+3=4, 1+3+5=9, 1+3+5+7=16, 1+3+5+7+9=25. Формула для получения n-го квадратного числа Pn(4)=n2. Каждое квадратное число, кроме единицы, есть сумма двух последовательных треугольных чисел: 4=1+3, 9=3+6, 16=6+10, Pn(4)=Pn-1(3)+Pn(3). До сих пор не доказана гипотеза Лежандра (1808 год): между последовательными квадратными числами всегда найдётся простое число. Не доказана, но и не опровергнута.

Частным случаем плоских чисел являются прямоугольные числа, являющиеся произведением двух последовательных натуральных чисел: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, … .

Натуральные числа. Этюды, вариации, упражнения - _9.jpg

Прямоугольные числа представляют собой удвоенные треугольные числа: Pn(np)=n(n-1).

Вернемся к правильным многоугольникам. На очереди пятиугольные числа: 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, … .

Натуральные числа. Этюды, вариации, упражнения - _10.jpg

Формула для получения n-го пятиугольного числа: Pn(5)=(n(3n-1))/2.

Далее идут шестиугольные числа: 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, ….

Натуральные числа. Этюды, вариации, упражнения - _11.jpg

Формула для получения n-го шестиугольного числа: Pn(6)=2n2-n. Последовательность шестиугольных чисел получается из последовательности треугольных чисел вычёркиванием элементов с чётными номерами: Pn(6)=P2n-1(3).

Можно было бы продолжать бесконечно, рассматривая прочие многоугольные плоские фигурные числа, но нужно где-то остановиться. Пусть это будут шестиугольные числа.

Выйдя из плоскости можно рассмотреть трехмерные правильные фигурные числа. Пирамидальные числа возникают при складывании маленьких шаров одинакового диаметра горкой так, чтобы они не раскатывались. Получается пирамида. Первые из них тетраэдрические числа – это фигурные числа, которые представляют собой пирамиду, сложенную из сфер одного диаметра. Каждый слой в такой пирамиде – треугольное число. Наверху один шар, под ним – 3, под теми – 6 и т. д.: 1, 1+3=4, 1+3+6=10, 1+3+6+10=20, … . Пример нескольких первых тетраэдрических чисел: 1, 4, 10, 20, 35, 56, 84, 120, 165, … . Формула для тетраэдрического числа: Tn(4)=(n(n+1)(n+2))/6.

Натуральные числа. Этюды, вариации, упражнения - _12.jpg

Затем к пирамидальным числам отнесем квадратные пирамидальные числа, представляющие собой количество сложенных сфер в пирамиде с квадратным основанием. И далее, далее … .

Кубические числа возникают при складывании кубиков: 1, 2·2·2=8, 3·3·3=27, 4·4·4=64, 5·5·5=125… , то есть это просто кубы натуральных чисел.

Натуральные числа. Этюды, вариации, упражнения - _13.jpg

В любом рассмотренном варианте фигурных чисел возможны продолжения. Некоторые из них мы отнесли во второй уровень классификации и все равно перебрать это многообразие невозможно. Причем, у каждого из этих видов чисел открыты свои свойства, о которых здесь не рассказано. Целью этой книги не является подробное описание свойств всех существующих групп натуральных чисел. Задача ставится иная: легкими штрихами наметить общую картину, заинтересовать читателя, который возможно сам продолжит рассмотрение понравившегося ему класса чисел, и тогда уж изучит все их свойства по другим источникам, а возможно сделает свои открытия. Вот где простор для тематики ученической проектной деятельности. Каждому ученику поручить исследование отдельного вида чисел, их хватит на целый класс.

Столкнувшись с тем многообразием, которое скрыто в одних только натуральных числах, понимаешь, для чего могла бы пригодиться бесконечная жизнь – изучать эти числа.

С другой стороны, поставьте себя на место древних пифагорейцев. Телевизоров нет, смартфонов нет, развлечений кот наплакал. Поэтому они и развлекались с натуральными числами и достигли в этом таких высот, которые современный человек вряд ли охватит своим умом. Причем учтите, во времена пифагорейцев занимались математикой и философией люди свободные от других забот, не ведающие иного труда, кроме умственного. Даже в умственной деятельности теоретические исследования считались достойными привилегированного класса, а чисто вычислительная, практическая деятельность поручалась низшим сословиям. В наше время нет привилегированных классов и большинству людей не до чисел, ведь жизнь с развитием цивилизации легче не становится. Но как в любой другой области, среди множества людей разумных есть и любители исследовать числа.

7
{"b":"684531","o":1}