Литмир - Электронная Библиотека
A
A

Во-вторых, все эти знаки есть в редакторе формул программы Microsoft Word и, следовательно, никаких проблем с набором текстов на компьютере не создадут.

Время покажет, приживется ли это предложение.

Среди унарных операций, которые можно провести с каждым натуральным числом есть одна, которая первоначально использовалась не в математических целях, а в целях околонаучных, типа гаданий, предсказаний и тому подобного. Операция называется вычисление цифрового корня числа. Цифровой корень натурального числа – это цифра, полученная в результате повторяющегося процесса суммирования цифр сначала данного числа, затем вновь полученного, повторяя процесс до тех пор, пока не будет получена одна цифра. Например, цифровой корень числа 1987652 это 2, потому что 1+9+8+7+6+5+2=38, далее 3+8=11 и, наконец, 1+1=2. Для этой операции встречается и другое название – конечная сумма цифр. В обоих случаях название многословное. Пользуясь сказанным выше, по аналогии, можно ввести обозначение для этой унарной операции: (+)n – тогда запись примет вид: (+)1987652=2. Объяснение вводимого знака следующее: + означает суммирование цифр, а круглые скобки показывают, что суммирование неоднократное, как в периодической дроби они показывают период цифры.

Очевидное свойство цифрового корня: n≤9(+)n=n, то есть цифровой корень однозначного числа равен этому числу, а точнее этой цифре. Имеет место следующее утверждение: Сумма цифр числа n имеет такой же остаток при делении на 9, как и число n.

Поскольку, если число больше 9, сумма цифр этого числа меньше самого числа, то справедливы следующие две формулировки:

а). Цифровой корень числа совпадает с остатком от деления исходного числа на 9, если только этот остаток отличен от 0.

б). Для чисел, сравнимых с 0 по модулю 9, цифровой корень равен не 0, а 9.

Цифровые корни часто используют для того, чтобы убедиться, что какое-нибудь очень большое число не является точным квадратом или кубом. Все квадраты имеют цифровые корни 1, 4, 7 или 9, а их последними цифрами могут быть 2, 3, 7 или 8. Кубы могут оканчиваться на любую цифру, но их цифровыми корнями могут быть только 1, 8 или 9.

Определившись с математическими операциями на множестве натуральных чисел, в том числе с операциями унарными, которые в этом множестве часто применяются, перейдем к изучению свойств натуральных чисел. Но прежде хочу поместить изображения вводимых унарных операций так, как они выглядят в редакторе формул, а не в клавиатурном наборе. Клавиатурный набор искажает эти знаки. Последний знак еще не введен, он встретится в дальнейшем изложении. Подчеркну, что введенные обозначения объединены одной идеей, легко запоминаются и допускают продолжение, то есть введение новых обозначений по аналогии при возникновении необходимости.

Натуральные числа. Этюды, вариации, упражнения - _1.jpg

Вернемся к числам. При рассмотрении натуральных чисел имеют место несколько подходов к изучению их свойств. Рассматривая некое свойство, из множества всех натуральных чисел выделяется подмножество чисел, обладающих данным свойством, и этому подмножеству присваивается характеристический термин в виде прилагательного. Как оказалось, таких прилагательных потребуется много. Иногда в таком подмножестве будет конечное количество чисел, но это редко, чаще всего из бесконечности выделяется другая бесконечность. Мы получаем интереснейшее явление: в бесконечном множестве можно выделить бесконечно много бесконечных подмножеств.

С другой стороны выделенное подмножество можно рассматривать как числовую последовательность, обладающую определенным свойством и говорить не просто о подмножестве, а об упорядоченном подмножестве, в котором можно пронумеровать его члены, то есть превратить подмножество в последовательность.

Еще один подход в рассмотрении натуральных чисел – это извлечь из натурального ряда конкретное число, рассмотреть свойства этого числа, присущие именно ему и поставить вопрос, есть ли другие числа, обладающие подобным свойством. Иначе говоря, дать числу характеристику. Особенно интересен вопрос вариативного представления чисел с помощью математических действий и знаков. Например, 100=(1+2+3+4)2=13+23+33+43. В таких вариациях с числами своя, математическая красота. Этими процессами мы и займемся далее.

Натуральный ряд чисел напоминает мне клавиатуру фортепиано с чередованием черных и белых клавишей: нечетное, четное, нечетно, четное и так далее. Представьте себе, что каждому числу был бы присущ определенный звук. Если уж на 88 клавишах фортепиано много веков композиторы создают мелодии, исчерпать разнообразие которых кажется невозможно, то какую музыку услышали бы мы, если бы числа звучали! Подумав об этом, решил писать не главы книги, а этюды, вариации и упражнения. Как будто мы учимся играть на фортепиано.

Вариации на тему разнообразия натуральных чисел

Вариация – произведение, представляющее собой повторение и разработку одной темы в различных видоизменениях.

Эта книга о натуральных числах, следовательно, о математике, но написана она на русском языке, и при изложении материала невозможно обойтись без прилагательных. Поэтому поговорим о прилагательных, которыми могут характеризоваться различные числа. Уверяю вас, в этом направлении можно найти много интересного, возможно, ранее неизвестного вам. За основу берем узкую область математики – только натуральные числа (первое прилагательное). При этом мы должны отбросить такие прилагательные как: отрицательные, целые, противоположные, дробные, рациональные, иррациональные, трансцендентные, алгебраические, действительные, вещественные, комплексные и гиперкомплексные. Все эти слова относятся к последующим расширениям множества натуральных чисел, не входящим в область нашего рассмотрения. Думаете, после этого останется мало прилагательных, которые можно «приложить» к натуральным числам? Как бы ни так, их еще удивительно много. В первую очередь натуральные числа являются положительными числами (второе прилагательное), к которым относятся все числа большие нуля.

Это были два общих определения, относящиеся ко всем натуральным числам. Далее мы будем использовать некие характеристические свойства, позволяющие выделить определенные числа из общей массы натуральных чисел или разбить их на непересекающиеся, а может быть и пересекающиеся подмножества. Классификацию будем вести одновременно по двум уровням. В первый уровень выделим основополагающие классы чисел, а во второй производные от основных определений, менее значимые.

Первый уровень классификации

Критерий – количество цифр в числе

По количеству цифр в записи числа натуральные числа можно разделить на следующие непересекающиеся подмножества:

однозначные, состоящие из одной цифры: 1, 2, 3, 4, 5, 6, 8, 9 (их всего девять);

двузначные, состоящие из двух цифр: от 10 до 99 (их девяносто);

трехзначные, от 100 до 999 (их девятьсот) и так далее, с обобщающим прилагательным – многозначные.

Критерий – делимость чисел

Взяв в качестве инструмента для классификации деление чисел, получаем разбиение натуральных чисел на четные и нечетные, простые и составные, избыточные и недостаточные, наконец, совершенные и дружественные.

Поговорим о каждом виде чисел подробнее.

Начнем с четных и нечетных, с ними нет никаких затруднений, они изучаются в школе. Четными называются числа, которые делятся на 2 без остатка: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,…. Нечетными называются числа, которые не делятся на 2, а дают остаток 1 при делении на 2: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,….

4
{"b":"684531","o":1}