Добавлю к этому, что если бы пропорции сил взаимных зависимости и независимости существования всех тел складывались сразу же главным образом беспорядочно и хаотично, то самой средней во всей природе и преобладающей была бы их пропорция дисгармоническая – 50 % на 50 %, или 1 к 1. И значит вся конкретная природа находилась бы тогда главным образом на грани образования и распада материальных образований. И значит не было бы тогда в природе ни единств, ни развития, ни даже самих сколько-нибудь крупных тел, ведь каждое из них, начиная от следующей после фотонов ступени сложности тел (считая фотоны второй космической конкретной материальной субстанцией), есть единство каких-то своих слагаемых. Но такая ситуация является абсурдной.
Всё сказанное о простой постоянной как исходной и средней и о простых производных гармонических пропорциях согласия и противоречия как положениях первых в бытие единства всеобщих содержаний – я показал, повторяю, на схеме 2.
Теперь скажу о таких же пропорциях сложных – о постоянной как исходной и средней и о производных гармонических, уже как положениях вторых.
Сложная постоянная как исходная и средняя пропорция участия слагаемых исходного единства всеобщих содержаний во всём содержании бытия каждой отдельной Вселенной состоит из множества (по числу этих слагаемых) различных неравных долей их участия, которые для каждого отдельного слагаемого являются совершенно определёнными и постоянными как исходные и средние.
Эти неравные доли участия, и значит неравные силы проявления и производная важность всех слагаемых этого абстрактного исходного единства всеобщих содержаний, выстраивают их в исходную, совершенно определённую, постоянную и неизменную как исходную и среднюю абстрактную иерархию между собой внутри своего единства.
Схематическая форма этой абстрактной иерархии, а также, по-моему, и формы всех конкретных естественных иерархий в первый, прогрессивный и наиболее гармоничный период их бытия, являются более-менее подобными форме фрактала по каплеобразности их формы и по относительной массовости всех их уровней (схема 3).
Далее, через эту исходную и среднюю иерархию слагаемых исходного единства преломляется исходная простая наиболее гармоническая пропорция – 2 к 1 (схема 2) – сил взаимных зависимости и независимости их существования и всего из них происходящего. И в результате этого преломления появляется исходная сложная, постоянная и неизменная (как исходная и средняя), наиболее гармоническая пропорция сил (схема 3) этих двух основных состояний бытия и происходящих из них взаимных отношений слагаемых исходного единства.
Эта исходная сложная пропорция отношений бытия слагаемых исходного единства, как и его пропорция исходная простая, существует в природе ещё и как всеобщий закон наилучшей гармонической сложной пропорции основных простых исходных (взаимные зависимость и независимость существования, согласие и противоречие) и сложных производных (мир и война, и затем добро и зло) состояний и отношений бытия, а значит и наилучших мира и добра для бытия и прогресса слагаемых всех сложных конкретных единств, и как самое среднее выражение из всех производных более или менее гармоничных и дисгармоничных отклонений от неё в стороны расширения и сужения в первый (прогрессивный) из трёх периодов бытия конкретных единств. Причём, как и с пропорцией исходной простой, небольшие отклонения от этой сложной пропорции составляют все степени гармонии основных состояний бытия и отношений любых слагаемых, а ещё большие отклонения от неё составляют уже все степени их дисгармонии.
Так как постоянная как исходная и средняя иерархия слагаемых исходного абстрактного единства всеобщих содержаний является первым из двух оснований для образования постоянной как исходной и средней сложной наиболее гармоничной пропорции основных сил бытия этих слагаемых исходного единства, то прежде чем строить схему этой сложной пропорции нужно подробно объяснить построение схемы этой постоянной иерахии слагаемых исходного единства, – это есть первое содержание схемы 3.
Схема постоянной как исходной и средней иерархии слагаемых исходного единства всеобщих содержаний должна соответствовать следующим двум требованиям к ней:
• первое, форма этой иерархии должна быть каплеобразной, как и форма всеобщего образца – фрактала;
• и второе, общая величина площади этой иерархии может быть любой, но относительная, процентная величина площади (или относительная массовость) всех уровней этой иерархии тоже должна быть такой же, как и образцовая относительная величина площади всех уровней фрактала.
Объясняю как я выполнял это второе требование к этой схеме:
• сначала я принял за величину расчёта площади уровней фрактала площадь его верхнего уровня, представленного правильной окружностью;
• затем я, прикладывая эту окружность верхнего уровня к площадям нижнего и среднего уровней фрактала, определил «на глазок», что на его нижнем уровне помещается приблизительно 2,5–2,75, а на его среднем уровне помещается приблизительно 3–3,25 площади этой окружности верхнего уровня;
• это означает, что вся площадь схемы фрактала, кроме площади его высшего уровня, делится приблизительно на 6,5–7 равных частей. Разница между этими величинами не очень большая, поэтому для более ровного и удобного расчёта процентной величины площади всех уровней фрактала я произвольно принял следующее деление его площади по частям: 1 часть (верхний уровень) + 3,25 части (средний уровень) + 2,75 части (нижний, или низкий и низший уровни) = 7 частей;
• далее я предположил, что на площадь высшего уровня фрактала приходится приблизительно около 2 % от всей его площади;
• это означает, что на все семь остальных частей площади фрактала приходится около 98 % всей его площади;
• и отсюда следует, что:
• на площадь верхнего уровня фрактала приходится около 14 % от всей его площади (98 %: 7);
• на площадь его среднего уровня приходится около 45,5 % от всей его площади (14 % х 3,25);
• и на площадь его нижнего (низкого и низшего) уровня приходится около 38,5 % от всей его площади (14 % х 2,75); а поотдельности: на низкий уровень, как я предполагаю, приходится около 33,5 %, и на низший уровень – около 5 %.
И именно такую процентность площади разных уровней постоянной как исходной и средней иерархии слагаемых исходного единства всеобщих содержаний я и старался возможно более точно выдержать на моей схеме 3.
Теперь о сложной, наиболее гармонической и постоянной как исходной и средней пропорции основных состояний и отношений бытия слагаемых этого единства всеобщих содержаний. Эта сложная пропорция, повторяю, происходит в результате преломления простой, наиболее гармонической (2 к 1) и постоянной как исходной и средней пропорции этих же состояний и отношений бытия этих же слагаемых через их постоянную как исходную и среднюю иерархию.
Из-за такого её происхождения эта исходная сложная пропорция сил основных состояний бытия всех слагаемых исходного единства обладает следующими двумя характеристиками:
• первая, схематическая форма этой пропорции является полностью подобной форме исходной иерархии слагаемых исходного единства, и значит она также является каплеобразной и имеет такие же процентные величины своей площади на всех своих уровнях; поэтому эта пропорция и есть второе содержание схемы 3;
• и вторая, самым средним процентным выражением этой сложной, схематически каплеобразной пропорции из суммы всех её различных частичных выражений, находящихся на всех её различных уровнях, соответствующих уровням иерархии слагаемых исходного единства, также является выражение – 66,2/3 % к 33,1/3 %, и значит её числовым выражением также является – 2 к 1.
Как подтвердить эту вторую характеристику этой схемы? —
Она подтверждается тем, что площадь схемы этой сложной исходной пропорции и площадь схемы исходной простой пропорции, построенные в одинаковых координатных прямоугольниках, являются равными по их величине (что я покажу чуть ниже), ведь при одинаковой величине площади этих схем и при их одинаковой длине, или высоте в одинаковых координатных прямоугольниках, средняя ширина схемы сложной пропорции, и значит её средние процентное и числовое выражения, будут точно соответствовать постоянной ширине, и значит постоянным процентному и числовому выражениям схемы пропорции простой.