Литмир - Электронная Библиотека
Содержание  
A
A

Более того, мантра «самодисциплина – это правильно», изготовленная в лобной коре с помощью отказа от соблазнительного печенья, срабатывает и тогда, когда приходится экономить для увеличения будущих пенсионных накоплений. Нейроны лобной коры – настоящие универсалы: их отростки расходятся широко, выполняя самую разнообразную работу{59}.

На эту работу требуется много энергии, поэтому не случайно, что в лобной коре уровень метаболизма исключительно высокий, равно как и активность генов, отвечающих за выработку энергии{60}. «Сила воли» – не просто метафора, она указывает на конечный (энергетический) ресурс, требующийся на поддержание самоконтроля. Мало того, что эти лобные нейроны дорого нам достаются, так они еще и весьма уязвимы – как и все «дорогие» клетки. Потому именно в лобной коре неврологические инсульты случаются гораздо чаще.

Здесь уместно упомянуть концепцию т. н. когнитивной нагрузки. Заставьте лобную кору выполнять трудную работу – к примеру, поставьте перед ней задачу на запоминание, на выбор социального поведения или пусть быстро примет целый ряд решений в магазине. А сразу после проведите тесты с ее участием: результаты этих тестов окажутся сниженными{61}. То же самое происходит при многозадачном режиме, когда префронтальная кора задействуется одновременно в нескольких нейронных схемах.

И еще вот что важно: при увеличении нагрузки на лобную кору у человека снижается социальное чувство[46] – он становится менее щедрым, меньше стремится помогать окружающим, больше врет{62}. При высокой когнитивной нагрузке – например, после тестов, требующих напряженной эмоциональной динамики, – человек зачастую начинает жульничать с собственной диетой[47]{63}.

Можно сказать, что лобная кора прямо источает строжайшую – кальвинистскую! – самодисциплину, работает не покладая рук{64}. Но вот самое трудное пройдено, новое качество как следует закрепилось – и мы, давно приученные к горшку, не замечаем автоматических движений мочевого пузыря. Так случается с любым важным новшеством, требующим работы лобной коры. Скажем, вы разучиваете трудный музыкальный пассаж в пьесе, и каждый раз, когда он прямо перед вами, вы думаете: «Ага, надо локоть придвинуть, большой палец отвести…» Типичная задача для рабочей памяти. Но однажды – «Вот он, пассаж, уже пять тактов его проигралось, а я только заметил это…» Значит, навык исполнения этого пассажа был передан лобной корой менее требовательным областям мозга, в данном случае – мозжечку. Подобный переход к автоматизму обычно происходит в процессе тренировок, например в спортивных упражнениях, когда, образно выражаясь, тело само знает, что ему делать, не привлекая к этому голову.

В главе про мораль рассматривается более важная роль автоматизма. Не врать – это трудно для лобной коры или не очень? Насколько затратно для нее сопротивляться вранью? Как мы увидим, говорить правду порой совсем нетрудно, спасибо выработанному автоматизму. С этой позиции легко понять ответ, который обычно дает совершивший подвиг смельчак. «О чем вы подумали, когда бросались в ледяную воду за тонущим ребенком?» – «Да ни о чем не подумал – я сначала прыгнул в воду и только потом осознал, что делаю». Труднейшие моральные решения с легкостью принимаются при включении нейробиологического автоматизма, а если приходится писать об этом статью, лобная кора заставляет как следует потрудиться.

Лобная кора и социальное поведение

Все становится даже интереснее, когда лобная кора вмешивает в когнитивный коктейль еще и социальные факторы. Например, у обезьян в префронтальной коре имеются нейроны, которые активируются, когда обезьяна ошибается в том или ином тесте или видит, как ошиблась ее товарка. А некоторые из этих нейронов возбуждаются только в особых случаях – при виде ошибки у определенных особей. В одном нейробиологическом исследовании с применением томографического сканирования человек должен был принимать решение с учетом собственных предыдущих результатов и советов постороннего человека. В этом случае возбуждение перескакивало от нейронного пути «награды» к нейронному пути «советов», туда и обратно{65}.

Имея в виду упомянутые исследования, мы можем переходить теперь к центральной роли, которую играет лобная кора в социальном поведении{66}. Особенно рельефно эта роль проявляется при сравнении различных видов приматов. Чем больше размер социальной группы, тем крупнее лобная кора – такая у приматов зависимость. В особенности она заметна у видов, особям которых свойственно то сходиться, то расходиться. Они временами живут небольшими независимыми группами, а иногда собираются и перегруппировываются. Для этого необходимо соизмерять свое поведение с размером группы и ее составом, а такое структурированное поведение требует серьезных усилий. Поэтому понятно, что у тех видов, которые практикуют социальную организацию по типу «сбежались-разбежались» – а это шимпанзе, бонобо, орангутаны, паукообразные обезьяны, – лобная кора осуществляет более эффективный тормозный контроль поведения, чем у видов с устойчивой социальной организацией (гориллы, макаки, капуцины).

Для людей с повышенным числом социальных контактов (их количество оценивают по личным сообщениям респондентов) характерно укрупнение одного из участков ПФК (это запоминаем, дальше пригодится){67}. Прекрасно, конечно, но вот незадача – мы не знаем, где причина, а где следствие: увеличение числа социальных связей вызвало рост этого участка ПФК или, наоборот, укрупнение участка ПФК повлекло за собой разнообразие социальных связей. Данный вопрос решен в другом исследовании. Макак-резусов случайным образом распределили по группам разного размера, и в течение 15 месяцев они жили этими группами. Оказалось, что у особей в крупных группах данный участок ПФК увеличился. Значит, размер группы повлиял на размер участка ПФК.

Лобная кора берет на себя управление, когда требуются серьезные социальные усилия – поблагодарить хозяев за ужасный обед, не дать в глаз разъяренному сотруднику, не делать нескромные предложения каждому симпатичному партнеру или партнерше, не хихикать во время траурной речи. Подумайте с благодарностью к своей лобной коре о том, что происходило бы, не помогай она нам сдерживаться, – лучше всего это покажут нам случаи пациентов с повреждениями данной части мозга.

Первым пациентом с подобными лобными повреждениями стал Финеас Гейдж из Вермонта. Его случай, ставший с тех пор хрестоматийным, описан в 1848 г. Гейдж работал проходчиком на строительстве железной дороги, и во время случайного взрыва порохового заряда с ним произошел несчастный случай – железный прут толщиной 3 см пробил ему голову, войдя с левой стороны лица и выйдя из черепа практически вертикально вверх. Прут пролетел еще 20 м и приземлился, прихватив значительную часть левой лобной коры Гейджа{68}.

Биология добра и зла. Как наука объясняет наши поступки - i_006.png

Чудесным образом Гейдж выжил и поправился. Но личность этого прежде уважаемого уравновешенного человека преобразилась. Вот как описывает Гейджа доктор, наблюдавший его много лет:

Между его интеллектуальными свойствами и животными наклонностями, если можно так выразиться, расстроилось равновесие, разрушился баланс. Он вспыльчив, непочтителен, позволяет себе грубейшие ругательства (что раньше ему было вовсе не свойственно), не кажет почти никакого уважения своим товарищам, не терпит советов и не проявляет сдержанности, когда это противоречит его желаниям, порой становится неуступчивым и строптивым, но при этом капризным и требовательным, строит многочисленные планы, которые никогда не исполняются, будучи заменены другими, которые кажутся ему более обоснованными.

вернуться

59

M. Rigotti et al., “The Importance of Mixed Selectivity in Complex Cognitive Tasks,” Nat 497 (2013): 585; J. Cromer et al., “Representation of Multiple, Independent Categories in the Primate Prefrontal Cortex,” Neuron 66 (2010): 796; M. Cole et al., “Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence,” J Nsci 32 (2012): 8988.

вернуться

60

L. Grossman et al., “Accelerated Evolution of the Electron Transport Chain in Anthropoid Primates,” Trends in Genetics 20 (2004): 578.

вернуться

61

J. W. De Fockert et al., “The Role of Working Memory in Visual Selective Attention,” Sci 291 (2001): 1803; K. Vohs et al., “Making Choices Impairs Subsequent Self-Control: A Limited-Resource Account of Decision Making, Self-Regulation, and Active Initiative,” JPSP 94 (2008): 883; K. Watanabe and S. Funahashi, “Neural Mechanisms of Dual-Task Interference and Cognitive Capacity Limitation in the Prefrontal Cortex,” Nat Nsci 17 (2014): 601.

вернуться

46

Из этого правила есть важнейшее исключение, относящееся к морали; мы это обсудим в главе 13.

вернуться

62

N. Meand et al., “Too Tired to Tell the Truth: Self-Control Resource Depletion and Dishonesty,” JESP 45 (2009): 594; M. Hagger et al., “Ego Depletion and the Strength Model of Self-Control: A Meta-analysis,” Psych Bull 136 (2010): 495; C. DeWall et al., “Depletion Makes the Heart Grow Less Helpful: Helping as a Function of Self-Regulatory Energy and Genetic Relatedness,” PSPB 34 (2008): 1653; W. Hofmann et al., “And Deplete Us Not into Temptation: Automatic Attitudes, Dietary Restraint, and Self-Regulatory Resources as Determinants of Eating Behavior,” JESP 43 (2007): 497.

вернуться

47

Сейчас по поводу когнитивной нагрузки ведутся горячие споры: что именно она снижает – силу воли или мотивацию. Нам пока это не так важно, поэтому будем считать оба понятия синонимами.

вернуться

63

К сноске: M. Inzlicht and S. Marcora, “The Central Governor Model of Exercise Regulation Teaches Us Precious Little About the Nature of Mental Fatigue and Self-Control Failure,” Front Psych 7 (2016): 656.

вернуться

64

J. Fuster, “The Prefrontal Cortex – an Update: Time Is of the Essence,” Neuron 30 (2001): 319.

вернуться

65

K. Yoshida et al., “Social Error Monitoring in Macaque Frontal Cortex,” Nat Nsci 15 (2012): 1307; T. Behrens et al., “Associative Learning of Social Value,” Nat 456 (2008): 245.

вернуться

66

R. Dunbar, “The Social Brain Meets Neuroimaging,” TICS 16 (2011): 101; K. Bickart et al., “Intrinsic Amygdala-Cortical Functional Connectivity Predicts Social Network Size in Humans” J Nsci 32 (2012): 14729; K. Bickart, “Amygdala Volume and Social Network Size in Humans,” Nat Nsci 14 (2010): 163; R. Kanai et al., “Online Social Network Size Is Reflected in Human Brain Structure,” Proc Royal Soc B 279 (2012): 1327; F. Amici et al., “Fission-Fusion Dynamics, Behavioral Flexibility, and Inhibitory Control in Primates,” Curr Biol 18 (2008): 1415. О подобных находках у врановых см.: A. Bond et al., “Serial Reversal Learning and the Evolution of Behavioral Flexibility in Three Species of North American Corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica),” JCP 121 (2007): 372.

вернуться

67

P. Lewis et al., “Ventromedial Prefrontal Volume Predicts Understanding of Others and Social Network Size,” Neuroimage 57 (2011): 1624; J. Sallet et al., “Social Network Size Affects Neural Circuits in Macaques,” Sci 334 (2011): 697.

вернуться

68

J. Harlow, “Recovery from the Passage of an Iron Bar Through the Head,” Publication of the Massachusetts Med Soc 2 (1868): 327; H. Damasio et al., “The Return of Phineas Gage: Clues About the Brain from the Skull of a Famous Patient,” Sci 264 (1994): 1102; P. Ratiu and I. Talos, “The Tale of Phineas Gage, Digitally Remastered,” NEJM 351 (2004): e21; J. Van Horn et al., “Mapping Connectivity Damage in the Case of Phineas Gage,” PLoS ONE 7 (2012): e37454; M. Macmillan, An Odd Kind of Fame: Stories of Phineas Gage (Cambridge, MA: MIT Press, 2000); J. Jackson, “Frontis. and Nos. 949–51,” in A Descriptive Catalog of the Warren Anatomical Museum, reproduced in Macmillan, An Odd Kind of Fame. The photographs of Gage come from J. Wilgus and B. Wilgus, “Face to Face with Phineas Gage,” J the History of the Nsci 18 (2009): 340.

14
{"b":"629714","o":1}