Литмир - Электронная Библиотека
Содержание  
A
A
31-2. ПРЕОБРАЗОВАНИЕ ДВОИЧНЫХ ЧИСЕЛ В ДЕСЯТИЧНЫЕ И НАОБОРОТ

Как установлено, двоичное число представляет собой число с весом каждого разряда. Значение двоичного числа может быть определено суммированием произведений каждой цифры на вес ее разряда. Метод вычисления двоичного числа показан на следующем примере:

ПРИМЕР: 

Введение в электронику - _174.jpg_0

Число 45 является десятичным эквивалентом двоичного числа 101101.

Дробные числа также могут быть представлены в двоичной форме путем размещения двоичных цифр справа от двоичной запятой, так же как и десятичные цифры размещаются справа от десятичной запятой. Все цифры справа от запятой имеют вес, представленный отрицательными степенями 2 или дробными значениями разрядов.

Степень 2 ∙ Значение разряда

25 = 32

24 = 16

23 = 8

22 = 4

21 = 2

20 = 1

десятичная запятая

2-1 = 1/21 = 1/2 = 0,5

2-2 = 1/22 = 1/4 = 0,25

2-3 = 1/23 = 1/8 = 0,125

2-4 = 1/24 = 1/16 = 0,0625

ПРИМЕР: Определить десятичное значение двоичного числа 111011,011.

Введение в электронику - _176.jpg

При работе с цифровым оборудованием часто бывает необходимо преобразовывать числа из двоичной системы в десятичную, и наоборот. Наиболее популярный способ преобразования десятичных чисел в двоичные — это последовательное деление десятичного числа на 2, с записью остатка после каждого деления. Остатки, взятые в обратном порядке, образуют двоичное число.

ПРИМЕР: Преобразовать 11 в двоичное число последовательным делением на 2. (Самый Младший Разряд).

Введение в электронику - _177.jpg

(1/2 = 0 означает, что 1 не делится на 2, так что 1 является остатком). Десятичное число 11 равно 1011 в двоичной системе.

Этот процесс может быть упрощен путем записи чисел упорядоченным образом, как это показано на примере преобразования 25 в двоичное число.

ПРИМЕР:

Введение в электронику - _178.jpg

Десятичное число 25 равно двоичному числу 11001. Дробные числа преобразовываются по другому: число умножается на 2 и целая часть записывается как двоичная дробь.

ПРИМЕР: Преобразовать десятичную дробь 0,85 в двоичную дробь последовательным умножением на 2.

Введение в электронику - _179.jpg

Умножение на 2 продолжается до тех пор, пока не будет достигнута необходимая точность. Десятичная дробь 0,85 равна 0,110110 в двоичной форме.

ПРИМЕР: Преобразовать десятичное число 20,65 в двоичное число. Разделите 20,65 на целую часть 20 и дробную 0,65 и примените описанные выше методы.

Введение в электронику - _180.jpg

Десятичное 20 — двоичному 10100

и

Введение в электронику - _181.jpg

Комбинируя два числа, получим 20,6510 = 10100,10100112.

Это 12-разрядное число является приближенным, потому что преобразование дроби было прервано после получения 7 разрядов.

31-2. Вопросы

1. Чему равно значение каждого разряда 8-разрядного двоичного числа?

2. Чему равно значение каждого разряда для 8 разрядов правее десятичной точки?

3. Преобразуйте следующие двоичные числа в десятичные:

а. 1001;

б. 11101111;

в. 11000010;

г. 10101010,1101;

д. 10110111,0001.

4. В чем состоит процесс преобразования десятичных чисел в двоичные?

5. Преобразуйте следующие десятичные числа в двоичные:

а. 27;

б. 34,6;

в. 346;

г. 321,456;

д. 7465.

31-3. КОД 8421

Код 8421 — это двоично-десятичный код (ДДК), состоящий из четырех двоичных разрядов. Он используется для представления цифр от 0 до 9. Обозначение 8421 относится к двоичному весу 4 разрядов.

Степени 2: 23 22 21 20

Двоичный вес: 8 4 2 1

Основным достоинством этого кода является то, что он допускает легкое преобразование из десятичной формы в двоичную, и наоборот. Поэтому двоично-десятичный код используется всегда, если не оговорено другое.

Каждая десятичная цифра (от 0 до 9) представляется двоичной комбинацией следующим образом:

Введение в электронику - _182.jpg

Хотя с помощью четырех двоичных разрядов можно представить 16 чисел (24), шесть кодовых комбинаций для чисел, больших 9 (1010,1011,1100, 1101, 1110 и 1111), в коде 8421 не используются.

Для того чтобы выразить любое десятичное число с помощью кода 8421, замените каждую десятичную цифру соответствующим 4-разрядным кодом.

ПРИМЕР: Преобразовать следующие десятичные числа в двоично-десятичный код: 5, 13, 124, 576, 8769.

Введение в электронику - _183.jpg

Для преобразования числа из двоично-десятичного кода в десятичную систему, разбейте число на группы по 4 разряда. После этого запишите десятичные цифры, соответствующие каждой 4-разрядной группе.

ПРИМЕР: Преобразуйте числа, записанные двоично-десятичным кодом в десятичную систему : 10010101, 1001000, 1100111, 1001100101001, 1001100001110110.

Введение в электронику - _184.jpg

Замечание: Если в крайней группе слева не хватает разрядов до четырех, то к ней добавляются нули.

31-3. Вопросы

1. Что такое код 8421 и как он используется?

2. Преобразуйте следующие десятичные числа в двоично-десятичный код:

а. 17;

б. 100;

в. 256;

г. 778;

д. 8573.

3. Преобразуйте следующие двоично-десятичные коды в десятичные числа:

а. 1000 0010;

б. 0111 0000 0101;

в. 1001 0001 0011 0100;

г. 0001 0000 0000 0000;

д. 0100 0110 1000 1001.

94
{"b":"594199","o":1}