Литмир - Электронная Библиотека
A
A

Для электронагревательных приборов частота почти безразлична. При понижении напряжения в 1,5 раза некоторые из них, например утюг или электрокамин, сохраняют работоспособность. Лампа накаливания при уменьшении напряжения в 1,5 раза уменьшает свой световой поток в 4,3 раза. Но нет худа без добра, срок службы возрастает в 38 раз!

По сообщениям наших корреспондентов из «горячих точек», где отключение электроэнергии длилось месяцами, появились простейшие любительские ВЭС на основе пропеллера диаметром около двух метров, соединенного ременной передачей с велосипедным генератором. Нередко их устанавливали на балконах городских домов. Такие электростанции больше служили поднятию морального духа, чем каким-либо практическим целям. Цель данной статьи — изложить общие принципы, которые можно было бы положить в основу при самостоятельном изготовлении небольшой, достаточно эффективной ВЭС.

До революции Россия была на первом месте в мире по использованию энергии ветра. Общая мощность наших ветроэнергетических установок (в основном это были мельницы и насосные станции) достигала 1,2 миллиона кВт. В США к 1945 году общая мощность ветродвигателей достигла 6 миллионов кВт, причем среди них преобладали электростанции.

Но впоследствии цены на нефть резко снизились, и интерес к ветроэнергетике везде резко упал. Сегодня общая мощность ветросиловых установок всего мира ниже, чем в дореволюционной России.

Однако возросли цены на нефть. Катастрофических размеров достигло вызванное сжиганием топлива загрязнение среды, и вновь возник интерес к энергии ветра.

В нашей стране на территории Калмыкии создан комплекс ветроэлектростанций мощностью около 1000 кВт каждая. Это огромные сооружения с высокими башнями, увенчанные стометровыми роторами.

ВЭС, способная дать свет и тепло односемейному дому, скромнее. Это сооружение высотой 10–15 метров с ротором диаметром 5–7 метров и мощностью около 10 кВт. Она оснащена системами автоматического поддержания параметров тока, батареей аккумуляторов и резервной дизельной электростанцией на случай длительного бездействия. За рубежом такие установки выпускаются в массовом масштабе и стоят не дороже автомобиля.

Прекрасные ВЭС мощностью до 250 Вт были разработаны в нашей стране еще в довоенное время (рис. 3).

Юный техник, 2001 № 05 - _42.jpg

При массовом производстве они были бы не дороже мопеда и вполне доступны для самостоятельного изготовления. Чертежи одной из таких установок, ВИСХОМ Д-1,5 с максимальной мощностью 120 Вт, нам удалось найти в старой литературе. Она настолько проста, что ее можно сделать в школьных мастерских.

Во все времена стремились добиться постоянства скорости вращения ветряка. В начале XX века ветроэнергетика значительно продвинулась в своем развитии за счет идей, взятых из авиации.

Так, например, появился винт переменного шага с поворотом лопастей относительно продольной оси. На ветродвигателе Д-1,5 для поворота лопастей служили специальные грузики (рис. 1).

Юный техник, 2001 № 05 - _43.jpg

При вращении ротора на них возникал гироскопический эффект, стремящийся развернуть лопасть вдоль потока. Но на оси лопасти была еще и пружина, которая при этом закручивалась, препятствуя повороту. При определенном подборе массы грузиков за счет противоборства сил инерции и упругости пружины удавалось поддерживать скорость вращения ротора с точностью до 6 % при изменении скорости ветра от 4 до 12 м/с.

Однако винт переменного шага дорог и сложен. Его применение на маломощных ветродвигателях экономически не оправдывалось.

Наиболее дешевые ветряки оснащались деревянным винтом постоянного шага. Поддержание постоянства скорости осуществлялось при помощи «лопаты» (рис. 2).

Юный техник, 2001 № 05 - _44.jpg

Она стремилась развернуть плоскость вращения винта по ветру, что уменьшало скорость вращения. Хвост же ветродвигателя, напротив, ставил плоскость вращения винта перпендикулярно ветру, чем достигалось ее увеличение. Регулирование опять-таки достигалось в результате противоборства этих двух сил. Однако без введения дополнительных сложных устройств качество регулирования получалось невысоким.

Сегодня подобное регулирование осуществляется с помощью электроники.

Поддерживая постоянство скорости вращения, можно получать стабильное напряжение и частоту тока. Мощность же, развиваемая генератором, по-прежнему зависит от скорости ветра. Например, ветродвигатель Д-1,5 при скорости 4 м/с развивал мощность на клеммах генератора 2,5 Вт; при 5 м/с — 13 Вт; при 7 м/с — 60 и начиная с 8 и более м/с — 109 Вт. Поэтому без применения аккумуляторных батарей, сглаживающих эту неравномерность получаемой мощности, пользоваться ветряными электростанциями трудно.

Среднегодовая выработка энергии зависит от средней скорости ветра в данной местности. Там, где часто дуют сильные ветры, а значит, могут прекрасно работать ветряки, например в Калмыцких степях, людей не так уж много. В обжитых же местностях либо дуют слабые ветры, либо сильный ветер часто сменяет безветрие. Поэтому ветряная электростанция Д-1,5 в местности со средней скоростью ветра 4 м/с выдает за год 191 кВт/ч. А при среднегодовой скорости ветра 7 м/с — 548 кВт/ч в год.

Учтем, что КПД электрогенератора малой мощности в те годы не превышал 50 %. Таким же низким был и КПД зарядно-разрядного цикла тогдашних аккумуляторов. Таким образом, потребитель получал лишь четвертую часть энергии от лопастей ветродвигателя. Сегодня эффективность подобной электростанции была бы в два раза выше.

Есть смысл сравнить ее с небольшими бензиновыми электростанциями. Обычно они расходуют около 400 г бензина на кВт/ч. Получается, что крохотная ветроэлектрическая станция довоенного образца экономит от 100 до 300 л бензина в год, а ее современное исполнение в два раза больше.

Ветроэлектростанция Д-1,5 крепилась на верхушке обычного зарытого в землю деревянного столба, применяемого для прокладки сельских линий электропередачи. Она состояла из автомобильного электрогенератора постоянного тока с двухлопастным пропеллером на валу. Он вращался со скоростью 900 — 1200 об/мин.

Сам генератор был снабжен хвостом и мог свободно поворачиваться на оси под действием ветра. Общее представление о креплении головки ветродвигателя к оси дает рисунок 4.

Юный техник, 2001 № 05 - _45.jpg

Конструкция этого узла может быть и иной, более соответствующей вашим возможностям.

Важнейшая деталь двигателя — воздушный винт. От точности его изготовления зависит вся работа электростанции (рис. 5, 6).

Юный техник, 2001 № 05 - _46.jpg
Юный техник, 2001 № 05 - _47.jpg

Чертеж лопасти винта взят из старого пособия. Заготовка ее состоит из 2–3 слоев толстой фанеры, склеенных казеиновым клеем. Готовая лопасть должна быть тщательно отлакирована и отполирована.

На рисунке 7 втулка винта с механизмом изменения шага.

Юный техник, 2001 № 05 - _48.jpg

Его вам придется конструировать самостоятельно, приведя в соответствие с размерами современных шарикоподшипников и диаметром вала выбранного вами генератора. Поворот лопасти осуществлялся под действием инерционных сил, возникавших на поперечной стальной штанге (длина — 150, диаметр — 8 мм). На рисунке 8 — пружина регулирования, длина заготовки — 1175 мм, число витков — 14.

12
{"b":"586282","o":1}