Мы уже говорили, что в природе не существует ни идеально черного, ни идеально белого. Но ученые для научных целей все же создали прибор, обладающий свойствами идеально черного тела. Он так и называется в физике — «черное тело». Его конструкция представляет собой металлический полый шар или цилиндр с небольшим отверстием. В промежутках между двойными стенками шара или цилиндра заложены электронагревательные элементы. Поверхность внутренней полости черного тела для лучшего поглощения падающих лучей иногда чернят и делают шероховатой.
Роль собственно черного тела играет отверстие в шаре. Как известно, черное тело поглощает все падающие на него лучи. Именно такое же действие производит отверстие. Посмотрите на чертеж прибора, и вы убедитесь в том, что луч, прошедший в отверстие извне, уже не вернется назад. Он «запутается» во внутренней полости шара. Претерпевая многократные отражения от стенок шара, он при каждом из них будет частично поглощаться и в конечном счете поглотится ими полностью.
Ход луча света в полости «черного тела». При каждом отражении от внутренней стенки часть света поглощается, и в конце концов стенки поглощают весь свет.
Зрачок нашего глаза кажется черным именно по этой же причине. Тем же объясняется и то, что днем окна домов кажутся снаружи черными.
Мы не зря уделили столько времени объяснению свойств черного тела. Это было необходимо потому, что исследование законов его излучения привело ученых к чрезвычайно важным открытиям. Эти и некоторые другие факты заставили ученых снова (в который раз!) пересмотреть свои воззрения на природу света.
Во-первых, стало известно, что спектр излучения черного тела непрерывный, то есть содержит колебания со всеми возможными длинами волн.
Во-вторых, эти опыты показали, что, хотя спектр излучения и непрерывный, мощность, излучаемая на разных частотах (длинах волн), различна: она максимальна внутри диапазона частот (волн) и практически падает до нуля к его краям. При этом частота, на которой имеется максимум излучения, тем больше, чем выше абсолютная температура.
В-третьих, оказалось, что суммарная мощность излучения черного тела возрастает пропорционально четвертой степени абсолютной температуры.
Экспериментальные данные были многократно проверены и ни у кого не вызывали сомнения. Однако, когда были сделаны попытки теоретически объяснить эти явления и найти формулу для их количественного выражения, ученые столкнулись с непредвиденными и, как оказалось, принципиальными трудностями. Все эти трудности сводились к тому, что теоретические выкладки, сделанные на основе столь хорошо зарекомендовавшей себя классической теории, совершенно не соответствовали фактам. Из этих выкладок следовало, что вся энергия черного тела должна была бы излучаться в виде коротковолнового излучения.
Из несоответствия практики и теории приходилось делать выводы. Первым, кто сумел объяснить законы излучения черного тела, оказался немецкий физик Макс Планк (1858–1947). Это было в 1900 году, три года спустя после открытия электрона.
Но, пожалуй, главной заслугой Планка было не само по себе объяснение законов излучения черного тела, а совершенно новое для физики предположение, которое ему пришлось сделать в ходе работы.
Для того чтобы понять всю необычность этого предположения, стоит провести один очень простой умозрительный опыт. Но читателю следует запомнить, что условия, в которых он будет проводиться, реально неосуществимы, а поэтому практически неосуществим и сам эксперимент. Проводить его можно лишь умозрительно.
Прежде всего предположим, что в нашем распоряжении имеется столь точный измерительный инструмент, с помощью которого мы можем измерять расстояние абсолютно точно и регистрировать даже самые незначительные его изменения. Вторым идеальным прибором, которым нам предстоит воспользоваться, будет простейший блок, отличающийся от реального лишь тем, что в нем полностью отсутствует трение.
Мысленно перекинем через блок веревку и к одному из ее концов прикрепим груз. Затем поднимем груз на высоту, равную 1 метру. Если вес груза был равен точно 1 килограмму, то при подъеме груза нам придется затратить работу против сил тяготения, точно равную 1 кГм. Но что это означает — затратить работу? Это означает отдать энергию, в данном случае 1 кГм энергии. Поднимая груз, мы отдаем энергию, она превращается в потенциальную энергию поднятого над землей груза. Следовательно, последний при этом получил энергию. И, так как условия эксперимента у нас идеальные, груз получил энергии ровно столько, сколько мы затратили, то есть 1 кГм.
Теперь приподнимем его еще на 0,000 001 метра. При этом мы отдадим, а груз получит 0,000 001 кГм. Поскольку измеритель расстояний абсолютно точен, можно изменять высоту подъема не только на одну миллионную долю метра, но и на одну миллиардную и на одну триллионную и любую другую как угодно малую долю метра. При этом величина затрачиваемой и приобретаемой энергии тоже будет уменьшаться до каких угодно малых долей.
До того как стала известной работа Планка, такой чисто умозрительный эксперимент приводил ученых к выводу, что энергия может делиться на любые малые, а в математическом смысле — на бесконечно малые доли. И на этом основании они считали, что энергия всегда и во всех случаях величина непрерывная.
Планк отказался от этого привычного и, казалось бы, вполне очевидного и доказанного представления, считая, что оно неприменимо при объяснении процессов излучения.
Он предположил, что при излучении энергия не может ни убывать, ни прибавляться бесконечно малыми долями и что все изменения энергии могут происходить только скачкообразно, то есть определенными порциями, очень небольшими, но конечными. Эти порции он назвал элементарными квантами или просто квантами.
Представим себе, что требуется наполнить стакан или мензурку определенным количеством жидкости. Естественно, что с первого раза мы не сумеем сделать это с достаточной точностью: либо не дольем жидкость до нужного деления, либо, наоборот, нальем чрезмерное количество. В обоих этих случаях можно или добавить, или убавить необходимое количество жидкости; причем это количество мы можем менять любыми, с точки зрения практики, произвольно малыми порциями.
Можно ли подобным образом изменять любые количества?
Мы знаем, что нельзя. Так, например, невозможно увеличить число учащихся в классе на 2,7 человека. Невозможно изменять произвольно малыми долями и сумму денег. Ее изменения всегда скачкообразны, причем наименьший «скачок» в нашей стране составит одну копейку, в ГДР — один пфенниг, в Англии — один фартинг.
Именно такое наименьшее возможное изменение, наименьший возможный скачок некоторой величины и называют квантом или элементарным квантом данной величины. Поэтому в равной степени правильно называть квантом человека, когда заходит речь о численном составе учащихся в школе, рабочих на заводе, населения в стране и тому подобное, и называть квантом копейку, когда говорят об исчислении денежной суммы в советских деньгах. Понятно, что названные кванты не имеют между собой ничего общего. Единственный признак, который дает право назвать квантом и то и другое, состоит в том, что обе эти величины являются наименьшими возможными изменениями соответствующих количеств. Есть элементарные кванты, величины которых можно сравнивать между собой. Таковы, например, элементарные кванты денег Советского Союза, ГДР и Англии — копейка, пфенниг и фартинг. Это сопоставимые кванты.
На практике многие прерывные величины вполне допустимо считать непрерывными. Взвешивая зерно, песок и другие сыпучие тела, разливая жидкости, мы не делаем сколько-нибудь заметной ошибки, считая, что их количества меняются непрерывно, то есть сколь угодно малыми порциями. На самом же деле это не так, и известно, что масса сыпучих тел может изменяться только прерывно, хотя величина скачка чрезвычайно мала. Мы пренебрегаем этой величиной во всех случаях, где она несущественна. Но мы будем поступать иначе, если придется взвешивать какие-либо драгоценные сыпучие тела. Для их взвешивания придется пользоваться весьма чувствительными и точными весами. И тогда мы уже не сможем пренебречь фактом скачкообразного изменения массы.