Литмир - Электронная Библиотека
Содержание  
A
A

Затем идут волны, которые мы привыкли считать радиоволнами: длинные — от 3000 до 600 метров; средние — от 600 до 150 метров; промежуточные— от 150 до 75 метров и короткие — от 75 до 10 метров. Низкочастотная граница длинных волн соответствует 100·103 герц, а высокочастотная граница коротких волн — 30·106 герц. Весь этот диапазон используется главным образом для радиовещания и различных видов радиосвязи на дальних расстояниях. В этом же диапазоне работают и некоторые медицинские установки.

Радиоспектр идет и дальше. Но для радиоволн с длиной порядка единиц метров и короче линия горизонта является почти непреодолимой преградой. Поэтому телевидение, радиовещание и радиосвязь на таких волнах ведутся только в пределах прямой видимости. Для того чтобы увеличивать зону прямой видимости, телевизионные антенны устанавливаются на очень высоких башнях. Длины волн метрового диапазона от 10 до 1 метра, а частоты — от 3·107 до 3·108 герц.

За метровыми следуют дециметровые волны длиной от 1 метра до 10 сантиметров; граничные частоты этого диапазона равны 3·108 и 3·109 герц. В этом диапазоне волн работают самые разнообразные радиотехнические устройства и, в частности, радиотелескопы, о которых дальше будет рассказано. Радиоволны, длина которых измеряется дециметрами, и еще более короткие волны имеют одну очень интересную особенность. Они могут распространяться не только в пустоте (в воздухе), но и в трубах, в так называемых волноводах.

Сантиметровые волны имеют длину от 10 до 1 сантиметра (частоты 3 ·109 до 3·1010 герц). Этот диапазон принципиально не отличается от предыдущего. В нем, в частности, работают метеорологические радиолокаторы.

Граничные частоты диапазона миллиметровых радиоволн соответствуют 3·1010 и 3·1011 герц. Миллиметровые волны являются в настоящее время самыми короткими из тех, которые умеет генерировать радиотехника. В наши дни еще только приступили к их практическому освоению. Пока же они используются только для экспериментальных целей.

За диапазоном радиоволн простирается спектр световых волн.

Самым близким к радиоспектру является инфракрасный. Он ограничен волнами длиной 400 микронов и 760 миллимикронов, что соответствует частотам от 7,5·1011 до 3,87·1014 герц. Получать волны в этом диапазоне можно с помощью некоторых специальных устройств, но наиболее простой способ заключается в нагревании каких-либо тел. Обычные лампы накаливания имеют очень интенсивное излучение в области коротковолнового инфракрасного излучения. Инфракрасные лучи широко используют в науке, технике и быту. С их помощью приготовляют пищу, обогревают помещения; сушат различные виды продукции. В этих лучах удается делать фотографии и с помощью особых приборов видеть ночью.

Видимые лучи света не требуют особого пояснения. Стоит лишь напомнить, что диапазон волн лежит в пределах от 780 до 380 миллимикронов, что соответствует частотам от 3,87·1014 до 8·1014 герц. Из этих цифр видно, какую узкую полоску из всего спектра электромагнитных колебаний могут непосредственно ощущать наши органы чувств.

Диапазон ультрафиолетовых лучей начинается с волны 380 миллимикронов, что соответствует частоте 8·1014 герц, и простирается до волн длиной 40 ангстрем[6] и даже короче. Частота на волне 40 ангстрем равна 7,5·1016 герц.

Ультрафиолетовые лучи, как и инфракрасные, широко применяются в науке и технике наших дней. С их помощью обнаруживают различные минералы, делают точнейшие химические анализы, стерилизацию пищи и лекарств.

Они используются в фотографии, судебной экспертизе, в светотехнике для возбуждения свечения люминесцентных красок. Ими широко пользуются и в медицине.

Девять цветов радуги - i_015.jpg

Шкала спектра электромагнитных колебаний.

Кстати, ультрафиолетовые лучи хоть и неправильно, но и не случайно называют кварцевыми. Дело в том, что обычные сорта оптического стекла становятся непрозрачными для ультрафиолетовых лучей уже на волнах порядка 2500 ангстрем. А стекла из чистого кварца пропускают эти лучи, поэтому баллоны ламп ультрафиолетовых источников света делаются из кварцевого стекла.

Но и кварц не может пропустить всего спектра ультрафиолетовых лучей: для волн короче 1800 ангстрем он тоже оказывается непрозрачным. В настоящее время наилучшим в этом смысле материалом считается флюорит, или плавиковый шпат, — он пропускает лучи с длиной волны 1200 ангстрем.

Рентгеновский участок спектра соседствует с ультрафиолетовым. Частоты рентгеновских излучений лежат в пределах от 6·1015 до 3·1019 герц, что соответствует волнам от 493 до 0,1 ангстрема. Некоторые области применения рентгеновских лучей вам хорошо известны. Они используются во всех случаях, когда надо посмотреть сквозь что-то, непрозрачное для других лучей. Поэтому их применяют для обнаружения внутренних дефектов в металлах, для различных исследований, основанных на явлениях дифракции рентгеновских лучей в кристаллах различных веществ.

К сожалению, в природе не существует таких материалов, которые могли бы преломлять рентгеновские лучи так, как стекловидимые. Поэтому оптические устройства типа объективов не могут быть для них созданы.

И, наконец, последний из известных в настоящее время науке участков спектра электромагнитных колебаний — участок гамма-лучей. Их испускают атомы радиоактивных элементов; гамма-лучи возникают и при некоторых видах взаимодействия элементарных частиц. Частота гамма-излучения начинается от 6·1018 герц, чему соответствует длина волны 0,428 ангстрема.

О коротковолновой границе гамма-излучения говорить трудно. С каждым годом она отодвигается в область все более коротких волн. Так, в излучениях, приходящих из космического пространства, обнаружены гамма-лучи с длиной волны порядка 0,0001 ангстрема.

Проникающая способность гамма-лучей еще более высокая, чем у рентгеновских. Поэтому их часто используют в тех случаях, когда рентгеновские лучи не в состоянии «пробить» исследуемый образец. Кроме того, для получения гамма-лучей достаточно иметь лишь радиоактивный изотоп, хранящийся для безопасности в контейнере, в то время как для получения рентгеновских лучей требуется весьма сложный и громоздкий рентгеновский аппарат. Гамма-лучи применяются также при некоторых химических процессах.

Необыкновенные хвосты

Библейских пророков более всего привлекали ужасы. Мор, голод, разграбление городов, гибель народов были любимейшими темами их прорицаний.

Пророки ссылались на божьи «знамения»: радуги, солнечные затмения и на другие небесные явления как на вестников несчастья. Не мудрено, что и «хвостатые звезды» — кометы, напоминающие суеверным людям карающий меч, — были зачислены «в штат» зловещих вестников, И их появление действительно наводило ужас на религиозных людей. И даже по сей день еще встречаются люди, верящие, что комета — предвестница войны.

Девять цветов радуги - i_016.jpg

Небесная странница — комета. Ее хвост всегда направлен в сторону от Солнца.

Необычный вид и сравнительно редкое появление на нашем небосводе этих небесных странниц издавна привлекали внимание ученых к кометам. Предметом особого изучения явились их необыкновенные хвосты. Тем более, что их поведение казалось наблюдателям очень странным. Дело в том, что хвост кометы не тянется за ней, оставаясь постоянно сзади головной части, а всегда находится на прямой, соединяющей головную часть кометы и Солнце, и направлен в сторону, противоположную ему.

Знаменитый астроном Кеплер еще в начале XVIII века высказал предположение, что подобная ориентация кометных хвостов может быть объяснена тем, что солнечные лучи оказывают давление на освещенные тела.

вернуться

6

Ангстрем — единица длины, употребляемая в спектроскопии и названная в честь физика Ангстрема. 1 А равен 0,0001 микрона.

12
{"b":"580536","o":1}