Теперь остановимся и посмотрим, что, собственно, сделано.
Попытаемся подвести черту.
Мы очень поверхностно проследили развитие теории эфира и убедились, что после опыта Майкельсона — точнее, после второй работы Майкельсона и Морлея (1887 г.) — необходимо какое-то существеннейшее изменение этой теории.
Какое именно, мы не знаем. Причем, хотя мы и зашли в тупик с гипотезой эфира, мы успели убедиться, что многие факты эта гипотеза объясняет очень хорошо и наглядно. Если вы «привыкли» к эфиру, если вы почувствовали некоторую симпатию к этой гипотезе — возможно, станет яснее, почему уничтожение эфира означало революцию в физике.
С нашей точки зрения гипотеза эфира — некоей загадочной субстанции — представляет только исторический интерес. Но, представив, почему был дорог эфир для физиков, мы лучше поймем, что сделал Эйнштейн.
Теорию относительности можно разбирать, совершенно не касаясь эфира. Возможно, тогда даже легче усвоить постулаты Эйнштейна. Но было бы очень жаль утерять перспективу. В самом начале книги говорилось, что постулаты Эйнштейна очень просты. Разрешите теперь взять эти слова назад.
Снова несколько слов о самом Эйнштейне.
Теория Эйнштейна очень стройна, изящна по своей структуре.
Постулаты Эйнштейна, пожалуй, значительно естественней и сформулированы намного более четко и строго, чем вся классическая физика.
Все эффекты, все существующие эксперименты теория Эйнштейна объясняет совершенно непринужденно.
Наконец, теория относительности непосредственно использует только опытные факты и в этом смысле непосредственно вытекает из опыта.
Но при всем этом для меня лично остается абсолютной загадкой, как двадцатипятилетний юноша Альберт Эйнштейн пришел к своей теории.
Пожалуй, малоубедительно соображение, что после работы Майкельсона теория относительности оставалась единственным выходом.
Было очень много возможностей исправления теории эфира. Их использовали, добивались известных успехов.
Лоренц, например, пытался объяснить опыт Майкельсона, сохранив эфир, сохранив почти все основы классической физики.
Ритц построил теорию, в которой эфир, правда, отбрасывался, но зато сохранялась неизменной классическая механика.
С точки зрения своей эпохи Эйнштейн пошел самым невероятным путем.
И создание теории относительности, пожалуй, в первую очередь обусловлено теми непостижимыми качествами ее автора, которые можно называть, можно объяснять, но нельзя воспринять.
И мне кажется, что среди многих бессмысленных занятий почетное место занимают попытки проанализировать в деталях механику мышления гения. Что касается мнения самого Эйнштейна, то он обычно объяснял, что думал над этими вопросами примерно десять лет. Точные слова Эйнштейна приведены в следующей главе; причем хотелось бы обратить внимание на ту замечательную наивность, с которой Эйнштейн пишет: «Интуитивно мне казалось ясным с самого начала…»
Покончим с эфиром. Вот резюме Майкельсона, которое довольно верно отражает состояние проблемы непосредственно перед созданием теории относительности:
Здесь Майкельсон цитирует, вероятно, самого остроумного физика в истории науки лорда Кельвина (Томпсона).
«Ряд не зависящих друг от друга рассуждений приводит нас к заключению, что среда, в которой распространяются световые волны, не представляет обычной формы вещества.
Несмотря на то, что мы весьма мало знаем об этой среде, мы все-таки можем сказать, что про обыкновенную материю мы знаем еще меньше…
Явление аберрации звезд можно объяснить при помощи гипотезы, что эфир не принимает участия в движении Земли вокруг Солнца. Между тем все попытки проверить эту гипотезу дали отрицательные результаты, вследствие чего мы можем сказать, что весь вопрос пока еще находится в неудовлетворительном состоянии».
Глава XI,
в которой автор пытается запутать терпеливого читателя, убеждая его в противоречивости постулатов Эйнштейна. В итоге выясняется, что постулаты Эйнштейна несовместимы с классической механикой, и автор призывает читателя разделить его восхищенное удивление Эйнштейном. Первая половина главы, возможно, несколько трудна, но утешение можно найти в том, что самое главное содержится как раз во второй половине
Счастливец Ньютон, систему мира можно установить только один раз.
Лагранж
Эйнштейн
(основные постулаты)
Наконец мы у цели. Все последующее посвящено непосредственно теории Эйнштейна. Мы не будем сколько-нибудь подробно останавливаться на других попытках объяснить результат Майкельсона, хотя они очень интересны и поучительны. Но несколько слов сказать о предшественниках надо, хотя бы затем, чтобы лишний раз убедиться, как много возможных путей открывается каждый раз, когда старая теория зашла в тупик и нужно создавать новую.
Традиционные общие рассуждения. Несколько слов о предшественниках Эйнштейна.
Первый — Лоренц, очень много работавший над теорией электромагнитного поля и создавший в восьмидесятых годах прошлого века наиболее стройную и прогрессивную схему «эфирной физики». После работы Майкельсона он сделал отчаянную попытку спасти свою теорию (1904 г.).
Лоренц предположил, что все тела, движущиеся относительно эфира, сокращаются в направлении перемещения в отношении
Здесь l0 — длина тела, покоящегося относительно эфира; v — скорость тела относительно эфира[53].
Он даже нашел очень правдоподобное (конечно, тоже гипотетическое) объяснение этого явления на основе своей теории строения материи. Теория Лоренца не только объясняла результаты опыта Майкельсона, но и по своей формальной, математической структуре очень походила на теорию Эйнштейна.
Еще ближе к теории относительности идеи крупнейшего французского математика Пуанкаре[54].
Довольно часто недоумевают: почему Лоренц и особенно Пуанкаре, так близко подошедшие к теории относительности, не смогли сделать последний шаг? Традиции обязывают высказаться по этому поводу.
Теорию относительности открыл Эйнштейн, а не Пуанкаре или Лоренц единственно потому, что Эйнштейн несравненно глубже разобрался в существе дела.
Этот ответ полностью исчерпывает проблему.
Если же говорить серьезно, то, пожалуй, широко распространенное мнение, что Пуанкаре и Лоренцу оставалось совсем немного для формулировки теории относительности, ошибочно.
Некий вклад в историю науки.
Всякая физическая теория в первую очередь определяется не математическим аппаратом, а физическим содержанием. Лоренц и особенно Пуанкаре действительно были очень близки к математической формулировке теории, но в физике они не разобрались. А этот последний шаг в данном случае и был самым трудным. И гадать, через сколько времени Пуанкаре пришел бы к идеям Эйнштейна, в высшей степени бессодержательное занятие.
Статья Эйнштейна «К электродинамике движущихся тел» была напечатана в 1905 году в семнадцатом томе «Annalen der Phýsic»[55].
Говорить о значении этой работы излишне, а внешняя характеристика труда Эйнштейна прекрасно дана Инфельдом: