Литмир - Электронная Библиотека
Содержание  
A
A

Правда, если учесть, что предполагаемая разница времен составляла 1/100 000 000 времени пути светового луча[51], а свой путь в приборе (несколько метров) он пробегает примерно за стомиллионную долю секунды, может быть, станет яснее, насколько «прост» был опыт Майкельсона.

Максвелл считал практическое осуществление своей идеи абсолютно безнадежным делом, и это совершенно понятно. Ведь необходимая относительная точность измерения (10–8) означает, например, что интервал в несколько тысяч лет надо замерить с точностью до одной секунды.

Или другое сравнение.

Разница времен, которую взялся уловить Майкельсон, по порядку меньше времени, необходимого электрону, чтобы сделать один оборот вокруг ядра.

Трудно даже представить все невероятные препятствия, стоявшие на пути Майкельсона.

Может быть, достаточно указать только одно «симпатичное» обстоятельство. База прибора имела длину примерно 1 метр. Для того чтобы замечать изменение времени движения луча света с точностью 10–8, надо быть убежденным, что длина пути светового луча остается неизменной, по крайней мере с точностью 10–9. Иначе время пути светового луча могло бы меняться просто из-за изменения длины базы. Точность же 10–9 означает, что расстояние в 1 метр может изменяться не больше чем на 10 ангстрем! Напомним, что 10 ангстрем — это линейный размер 3–4 атомов, поставленных рядом.

Следовательно, малейший толчок, ничтожное изменение температуры — и база изменилась бы на значительно большую величину. На прибор Майкельсона в буквальном смысле слова нельзя было дышать! Чтобы избежать сотрясений, Майкельсон работал в подвале на тумбе, врытой в землю. Каменная плита, на которой была смонтирована установка, была положена на круглую деревянную пластину, плавающую в сосуде, наполненном ртутью.

Сотрясение удалось ликвидировать. Но как измерить время пути светового луча? Любые попытки непосредственного измерения обрекали, конечно, опыт на полную неудачу. И Майкельсон применил очень изящный прием. Он использовал эффект интерференции.

…Если пучок света раздвоить, а потом снова свести два полулуча в одну точку, на экране будет наблюдаться определенное чередование интерференционных полос.

Очевидное? Нет, еще неизведанное… - i_077.png

На рисунке показан тот способ разделения луча, который использовал Майкельсон. Слабо посеребренная пластина частично отражает и частично пропускает свет.

Колебания в обоих световых лучах строго когерентны (синхронны), и, попадая на экран, световые волны интерферируют. Если разность путей строго постоянна, интерференционная картина, видимая в окошечко интерферометра, неизменна, поскольку она полностью определяется разностью времен хода световых пучков. Стоит чуть-чуть изменить разность путей, как характер наблюдаемых интерференционных полос изменится. Чему равно это самое «чуть-чуть»? Оказывается, можно добиться почти невероятной относительной точности — 10–10!

Это и использовал Майкельсон. В приборе он разделил пучок света на два взаимно перпендикулярных луча, а затем свел их вместе. В окошечке интерферометра наблюдалась какая-то интерференционная картина, чередование интерференционных полос. Пока все внешние условия оставались неизменными, интерференционные полосы также не изменялись. Майкельсон добился, что они оставались неизменными по нескольку часов.

Более или менее точное описание опыта.

Если теория неувлекаемого эфира верна, то, как мы видели, свету совсем не безразлично, распространяется он параллельно движению Земли сквозь эфир или перпендикулярно. На один и тот же путь он затратит различное время. Поэтому при повороте прибора на 90° («пловец № 1» и «пловец № 2» меняются местами) должно наблюдаться изменение интерференционной картины. И тем не менее…

См. описание опыта с плотом.
Очевидное? Нет, еще неизведанное… - i_078.png

Уже в первом своем опыте Майкельсон установил, что при повороте прибора на 90° никакого ожидаемого систематического смещения интерференционных полос не наблюдается. Результат прямо противоречил выводам теории.

…Когда речь шла о такой важной проблеме, как теория эфира, казалось бы неоднократно подтвержденная, отрицательный результат опыта в первую очередь вызывал сомнения в том, насколько чисто был сделан эксперимент.

Между прочим, С. И. Вавилов замечает, что точность измерений в первом опыте была слишком мала и Майкельсон скорее угадал, чем строго обосновал правильный вывод. Поэтому прежде всего Майкельсон решил проверить собственные наблюдения.

Через шесть лет (он совместно с Морлеем) повторяет свой опыт на более совершенной установке. На этот раз он как будто безусловно убеждается в отсутствии эффекта. Однако были высказаны новые сомнения.

Несколько слов о характере физиков.

К работам, имеющим такое значение, как опыт Майкельсона, физики вообще относятся крайне недоверчиво. И опыт Майкельсона со все возрастающей точностью повторяли еще много раз, вплоть до 1927 (!) года.

Конечный приговор всей совокупности экспериментов гласил: «Майкельсон прав! Никакого эффекта движения Земли сквозь эфир нет, никакого „эфирного ветра“ не существует!»

Заметьте — 1927 год! Прошло уже 40 лет со времени первого опыта Майкельсона и 22 года от дня создания теории относительности. Уже проделаны десятки различных экспериментов, подтверждающих эту теорию. Но результат Майкельсона все снова и снова настойчиво проверяют ученые.

Подобная скрупулезная придирчивость очень характерна для физики вообще. Нет такого общего положения в ее истории, которое не подвергалось бы самой жестокой экспериментальной проверке, и трудно сказать, когда, наконец, наступает тот благословенный для теории момент, когда можно считать, что она безусловно справедлива…

Из опыта следовало, что гипотеза неувлекаемого эфира в чем-то несправедлива, в чем-то ее надо менять. Этот вывод и сделал Майкельсон. Но он не знал, чтó именно несостоятельно в теории неувлекаемого эфира. Может быть, эфир увлекается только у поверхности Земли? А опыты проводились в подвальном помещении.

Снова сомнения.

Майкельсон допускал эту возможность.

«…Безнадежно пытаться решать вопрос о движении солнечной системы по наблюдениям оптических явлений на поверхности Земли. Но не исключено, что даже на умеренной высоте над уровнем моря, например на вершине какой-нибудь уединенной горы, относительное движение можно заметить при помощи аппарата вроде описанного в наших опытах».

Впоследствии опыт Майкельсона был повторен на вершине горы и даже на воздушном шаре. Результат по-прежнему был отрицателен.

Несколько раз возникали сомнения в правильности расчета и в обработке данных эксперимента. Снова и снова проверяли работу Майкельсона, пока не убедились окончательно в отсутствии «эфирного ветра».

Помимо опыта Майкельсона, были проделаны многие отличные по своей идее «опыты второго порядка». И все они давали отрицательный результат.

Уже была создана теория относительности, уже все стало понятным, уже эфир был выброшен «в ту мусорную кучу, где давно гнили флогистон, теплород, horror vacui»[52], как четко сформулировал один из ученых начала XX столетия, а экспериментаторы снова и снова проверяли результат Майкельсона. И трудно сказать, в каком году и в какой именно день подобная инспекция перестала представлять научный интерес.

Всегда наступает какой-то момент, когда совершенно законное вначале критическое, недоверчивое отношение к новой теории переходит в закостенелый консерватизм. Но когда именно он наступает, сказать трудно. Во всяком случае, теория относительности «вышла чистой» после такого «перекрестного допроса с пристрастием», после стольких вызовов к судейскому столу эксперимента, что можно быть уверенным в ее абсолютной «порядочности».

вернуться

51

Так как vЗемли = 30 км/сек., то vЗемли/C = 10–4 и (tN1 – tN2) = t0v2/2c2 = t0/2 · 10–8.

вернуться

52

Теплород, флогистон, horror vacui (ужас пустоты) — все это в свое время очень модные и распространенные теоретические концепции, отброшенные в дальнейшем как несостоятельные.

42
{"b":"568614","o":1}