Литмир - Электронная Библиотека
Содержание  
A
A

Уже в первом законе механики встречается понятие силы. По существу, все остальные законы механики как раз и расшифровывают это понятие.

Опять уклонимся от идеально четких определений и формулировок, так как попытка дать строгое, аксиоматическое определение понятия силы завела бы слишком далеко. Просто постараемся отметить самое характерное.

Сила, вообще говоря, характеризует взаимодействие тел между собой[22].

Кое-что о силе.

Однако сказать, что сила характеризует взаимодействие, значит сказать очень мало. Нам надо знать: как проявляется это взаимодействие?

Первое, что можно утверждать, — это следующее.

Если на данное тело действовать силой, то тело приобретает ускорение.

Если одну и ту же силу прикладывать к различным телам, ускорения, полученные этими телами, также, вообще говоря, будут различны.

Поскольку сила (взаимодействие) проявляется в появлении ускорения, а ускорение характеризуется не только величиной, но и направлением, ясно, что сила также характеризуется не только своей абсолютной величиной, но и направлением своего действия. Оказывается, что сила — вектор[23].

Вы, возможно, заметили, что для того, чтобы предыдущие рассуждения были содержательны, мы должны уметь измерять силу, прикладывать равные силы к разным телам и т. д.

Чтобы силу можно было измерять, полагают, что сила, действующая на данное тело, пропорциональна тому ускорению, которое получает это тело: F = ma.

Величина m — масса — характеризует стремление тела в отсутствии взаимодействий оставаться в инерциальной системе в состоянии покоя или равномерного прямолинейного движения. Она отражает инерцию тела, его «косность».

Ответ на вопрос о количественном взаимодействии тел между собой и, в частности, ответ на вопрос: «Как прикладывать к разным телам равные силы?» — дает третий закон Ньютона:

«Действие равно противодействию, или иначе — действия двух тел друг на друга равны и противоположно направлены».

F1;2 = –F2;1

Замечания о массе в классической механике.

Что касается меры инерции — массы, то это замечательная, удивительная величина. Во-первых, масса — аддитивна, то есть, если сложить два тела («слепить вместе два пластилиновых шарика»), то, оказывается, их суммарная масса равна сумме их масс: M = m1 + m2.

Многие читатели, возможно, подумают, что аддитивность массы настолько же очевидна, как и то, что «Волга впадает в Каспийское море». Но если задуматься над этим, придется признать, что нет никаких оснований заранее ожидать, что масса обладает таким свойством. Еще и еще раз стоит подчеркнуть, что, как правило, очевидным представляется привычное, хотя «привычное» и «очевидное» несколько разные понятия.

Другое и, может быть, не менее замечательное свойство массы — ее неизменность при переходе от одной инерциальной системы к другой. Другими словами, последнее утверждение можно выразить так: «Масса тела не зависит от скорости его движения»[24].

Масса тела — мера его инертности — в механике Ньютона совершенно не зависит от тех разнообразных физических условий, в которых находится тело. Можно изменять температуру, давление, местоположение тела, можно помещать его в электромагнитное или гравитационное поле — масса (или инертность) останется неизменной.

Самые различные по своей природе тела, между которыми нет, казалось бы, абсолютно ничего общего, получают одну общую характеристику — инертность (массу). А с другой стороны, второй закон Ньютона позволяет единообразно описывать взаимодействия тел самой различной природы.

Если рассматривается движение тел с переменной массой, второй закон Ньютона приобретает более общую форму:

Очевидное? Нет, еще неизведанное… - i_029.png

Величина mv = p называется импульсом, или количеством движения тела.

В том случае, если вы не удовлетворены этими отрывочными замечаниями, можно разрубить узел, — считая массу первичным понятием.

Тогда второй закон Ньютона можно рассматривать как определение силы.

Если вас не удовлетворяет и это, можно порекомендовать обратиться к более серьезным работам, где вопросы аксиоматики механики разбираются детальнее[25]. Мы не будем дальше исследовать эту сторону законов Ньютона.

Но законы механики связаны с одним, может быть, не столь непонятным, сколь удивительным фактом, и об этом нужно сказать.

Когда мы говорили о законах механики, само собой подразумевалось, что все рассмотрение проводится в инерциальной системе отсчета.

И теперь настал момент снова спросить: «Что же такое инерциальная система отсчета?»

Попытка строго определить понятие инерциальной системы. «Порочный круг».

В начале главы мы сказали, что, воздерживаясь от строгих определений, удовлетворимся тем, что экспериментально проверим, выполняются или нет в данной системе отсчета законы Ньютона.

Но, проверяя на опыте, скажем, первый закон, мы сталкиваемся с такой проблемой: как установить, что на тело не действует никакая сила, что тело свободно?

Единственный логически строгий ответ таков: мы видим, что на данное тело не действуют силы, если в инерциальной системе отсчета оно покоится или находится в состоянии равномерного прямолинейного движения.

Но как раз этот единственный ответ и не годится потому, что мы не знаем, мы как раз хотим узнать, инерциальна наша система отсчета или нет.

Такая попытка определить инерциальную систему приводит нас к печальной ситуации «порочного круга».

И вполне понятно, что, пытаясь логически безупречно определить понятие инерциальной системы отсчета, использовав законы Ньютона, которые, в свою очередь, сформулированы только для инерциальных систем, мы попадали в «порочный круг».

Очевидное? Нет, еще неизведанное… - i_030.png

Но сейчас наши желания значительно скромнее. Мы махнули рукой на логику. Мы хотим как-то чисто опытным путем с достаточной достоверностью найти: инерциальна ли данная система отсчета или нет?

И у нас нет лучшего рецепта, чем положиться на интуитивное представление о силе.

Не претендуя на строгость, скажем: что «если какое-то тело отнесено от всех остальных „достаточно далеко“ и никакие силы на него не действуют — тело свободно».

Тогда, если это тело равномерно и прямолинейно движется или покоится в какой-то системе отсчета, эта система инерциальна[26].

Что значат слова «достаточно далеко»? Ну, они просто означают «очень далеко». А в каждом конкретном случае можно как-то приблизительно сказать, на какое именно расстояние.

Конечно, эти замечания малоутешительны. О каком-либо логически строгом определении инерциальной системы говорить не приходится. Но ничего лучшего предложить нельзя. И можно отчасти успокаивать себя тем, что наше определение свободного тела очень наглядно и физично.

Скажем, исследуя движение планет вокруг Солнца, можно надеяться, что все окружающие солнечную систему звезды никак не влияют на движения планет и силы, действующие на планеты, обусловлены только их взаимодействием с Солнцем и между собой. Сделав это предположение и анализируя результаты наблюдений, мы устанавливаем, что в системе отсчета, связанной с Солнцем и небом неподвижных звезд, выполняются законы Ньютона, — и, значит, эта система инерциальна.

вернуться

22

Эта фраза не совсем точно отражает суть дела, поскольку сила может характеризовать также взаимодействие тела с полем. Но чтобы не терять времени на обсуждение сложного (правда, едва ли не основного в современной физике) понятия поля, удовлетворимся вышесказанным.

вернуться

23

О векторах уже упоминалось, но, к сожалению, мы не можем подробно разбирать, что такое вектор. Отметим только замечательное правило сложения векторов — правило треугольника (или, как иногда говорят, правило параллелограмма).

«Чтобы сложить два вектора, надо отложить один из них. Затем из конца первого вектора провести второй. Сумма этих двух векторов — это вектор, проведенный из начала первого вектора в конец второго».

Очевидное? Нет, еще неизведанное… - i_134.png

Слова «сила — вектор», в частности, означают, таким образом, что если на данное тело действуют две силы A и B, то результат их действия таков же, как если бы действовала одна сила C. Все это очень нестрого, но не стоит отвлекаться.

вернуться

24

Снова, забегая вперед, отметим, что это положение верно только приближенно. Но пока скорости много меньше световой, зависимость массы от скорости совершенно незаметная.

вернуться

25

Надо сказать, что на этих вещах действительно не стоит очень задерживаться, потому что всю механику Ньютона можно построить, используя некоторые очень общие принципы; причем число постулатов и определений сводится до минимума и достигается совершенная ясность.

вернуться

26

Знакомый с силами Кориолиса читатель легко заметит: установив, что какое-то свободное тело покоится, еще нельзя утверждать, что система отсчета инерциальна. Строго говоря, одного свободного тела вообще недостаточно для проверки системы отсчета «на инерциальность». Необходимо исследовать движение трех тел, движущихся не в одной плоскости. Но это уже тонкости.

21
{"b":"568614","o":1}