Кое-какие из вопросительных знаков, наставленных Спициным, его новый руководитель зачеркнул сразу. Например, сомнение относительно метана в опытах Болтона.
Кристалл алмаза — это как бы разросшаяся во все стороны молекула из атомов углерода. И в этой «молекуле» энергия связи соседних атомов друг с другом и расстояния между ними примерно такие же, как энергия связи и расстояния между атомами в молекулах насыщенных углеводородов. Один из них — метан; его молекула представляет собой как бы удобный по размеру каркас, контейнер, содержимым которого в принципе может надстраиваться кристаллическая решетка алмаза.
Однако вопросов, на которые Дерягин знал ответ, было, естественно, не так уж много. И Спицин под руководством Дерягина начал свое исследование.
Спустя примерно полгода Дерягин и Спицин представляли себе что-то вроде «общего плана», в котором были три главные задачи.
Задача первая. Чтобы наращивать алмазный кристалл без высокого давления, нужны свободные атомы углерода либо, еще лучше, свободные радикалы или иные молекулярные «блоки», близкие по конструкции к структуре алмазной решетки. Задача не так проста, как может показаться: многие соединения углерода при повышении температуры немедленно полимеризуются, образуя все более крупные молекулы.
Задача вторая. Свободные атомы углерода (или группы атомов) должны двигаться с весьма большой скоростью, чтобы преодолеть отталкивание одноименно заряженных атомов поверхности алмаза. Иными словами, нужна очень высокая температура.
Задача третья. С поверхностью алмаза должно сталкиваться не больше атомов углерода, чем имеется свободных связей на этой поверхности. Иначе произойдет нечто подобное тому, как если бы каменщику стали подавать не по одному кирпичу, а сразу три или пять. Вместо ровной стенки получилась бы куча кирпичей. Вместо прозрачного алмаза нарастет черный слой графита.
Условия были очень трудными, но, как справедливо заметил еще Лейпунский, не безнадежными…
Объективные условия для серьезных поисков способа вырастить алмазный кристалл без высокого давления, наверное, к тому времени вполне созрели. В то самое время, когда в Институте физической химии начали заниматься алмазом, который должен был расти «из газа», служащий одной из американских авиационных компаний, Джон Бринкман, размышлял о таком же выращивании алмазов, — только не в газе, а в расплавленном металле.
Брицкман знал, что Руфф, повторив в 1917 г. опыт Муассана, пытался затем усовершенствовать этот способ. В науглероженный металлический расплав он помещал затравочный кристаллик алмаза, рассчитывая, что тот подрастет. Алмаз расти не пожелал.
За четыре десятка лет, прошедших с того времени, появилось множество новых сведений о кристаллизации алмаза. Из них, в частности, следовало, что Руфф неправильно определил температуру, потребную для эпитаксиального роста. Бринкман взял графитовый тигель (графит мог выдержать очень высокую температуру и одновременно служил источником углерода) и стал в нем плавить разные металлы и опускать в расплав крупинки алмаза.
Он проделал множество опытов и никаких изменений с затравочными кристалликами не обнаружил. Но вот однажды, когда находившееся в тигле расплавленное серебро было нагрето до 3000°, кристаллики алмаза заметно потяжелели.
В 1962 г. стало известно об опытах В. Г. Эверсола из фирмы «Юнион карбайд» в США. Вместо четырехиодистого углерода, применявшегося Дерягиным и Спициным, Эверсол пользовался метаном (как в 1911 г. Болтон), пропаном, этаном, хлористым метилом. Схема его опыта казалась простой: Эверсол брал обычный алмазный порошок, продувал над ним нагретый до 900 — 1100° газ, и часть углерода оседала на алмазных кристалликах новым алмазным слоем. Чем мельче были пылинки, тем лучше они росли (естественно: у мелкого порошка больше общая поверхность). В одном из опытов, когда размер пылинок не превышал десятой доли микрона (т. е. поверхность 1 г этой пыли была 20 м2), на этом грамме наросло еще 600 мг алмаза.
Правда, одновременно осаждялся и графит. Так что время от времени аппарат приходилось останавливать, извлекать алмазный порошок и кипятить его в кислотах, чтобы вся копоть растворилась, или пропускать над порошком горячий водород, чтобы графит прореагировал с ним. За то время, что длился этот опыт, наращивание прекращали 80 раз — и каждый раз на 16 часов.
Для реального промышленного процесса все это еще не подходило, но главное было в другом — опыты Эверсола и аналогичные эксперименты в Институте физической химии АН СССР доказали: алмазы можно выращивать без высокого давления. Может быть, «этим способом» росли и природные алмазы? Ведь вот в Якутии на трубках «Удачная» и «Зарница» ударили метановые фонтаны, а «Каменная», «Оливиновая» и другие безалмазные трубки (хоть и кимберлитовые) оказались без малейших признаков газа… Кто знает!
Опыты доказали, что алмазы можно выращивать без высокого давления, но ничего подобного тому, что было после Лундблада, Холла и Верещагина, пока не происходит; сообщений о фабриках, изготовляющих искусственные бриллианты, нет… Время роста кристалла (месяцы? годы?) и постоянство режима в течение этого времени оказались препятствиями посложнее, чем сверхпрочные сплавы и сверхвысокие давления. Ювелирный процесс нуждается в ювелирной аппаратуре; любая чужая молекула может стать зародышем постороннего тела и свести на нет многомесячную работу…
В 1967 г. Б. В. Дерягин и Д. В. Федосеев предложили новый метод наращивания кристаллов алмаза из газовой фазы, названный импульсным. Суть его заключалась в создании периодического импульсного пересыщения газовой фазы над затравкой. Импульсы следовали один за другим через каждую десятую часть секунды. При этом слой алмаза рос, а графит не успевал образовываться.
Для этого метода был создан аппарат эпитаксиального синтеза, в принципе по той же схеме, что выбрал еще Лавуазье, когда за двести лет до них сжигал алмаз. Шеститысячеваттная ксеноновая лампа, два параболических зеркала, концентрирующих ее лучи, и рениевая петелька в фокусе зеркал — на ней держится алмазный кристаллик, который должен подрасти, или навеска алмазного порошка.
Все вместе втиснуто в прозрачный сосуд из тугоплавкого кварца, через него можно прокачивать газ — тот же метан из городской газовой сети. Температура регулируется поворотом ручки реостата, давление газа — вентилем.
Легко себе представить, как светит лампа в шесть тысяч «свечей»; аппарат пришлось закрыть непрозрачным кожухом. И прежде чем открыть окошко, чтобы взглянуть, как там растет алмаз, приходилось брать щиток с черным стеклом, каким пользуются сварщики.
Исследователи то и дело брались за этот щиток и заглядывали в окошко, чтобы убедиться, все ли там в порядке, или в надежде увидеть что-нибудь необычное. А может быть, просто потому, что каждому человеку хочется, чтобы его дело двигалось быстрее. Как тут не глянуть лишний раз!
Но быстрее дело, к сожалению, не двигалось. Грани кристаллика росли медленно, как и предупреждал почти тридцать лет назад Франк-Каменецкий, Увидеть, что они и в самом деле растут, было совершенно невозможно: за час прибавлялось всего несколько микрон. Тем не менее это было уже в тысячу раз быстрее, чем у Эверсола, и, главное, не нужно было прерывать синтез для очистки кристалла от графита.
Но вот 13 апреля 1967 г. в лаборатории возникло необычайное волнение — из рук в руки передавался щиток, и очередной счастливец, приникнув к ослепительному окошку, видел через черное стекло совершенно неожиданную картину: на грани кристалла росла прозрачная нить. Весь вечер и всю ночь шли исследования. К утру рентгенограммы подтвердили: это алмаз.
Потом удалось вырастить «усы» самых разных форм и размеров. И даже круглые, и даже слегка ограненные алмазные наросты. А самое замечательное было то, что усы росли с поразительной для алмаза скоростью: в среднем по 10 микрон в час. Если по способу Эверсола слой толщиной в миллиметр мог образоваться на грани кристалла за 10 млн. часов чистого роста, то здесь алмазный ус иногда подрастал на 1 мм всего за 4 часа. В 2,5 млн. раз быстрее!