Литмир - Электронная Библиотека

Не только расчеты доказывали это, но и неудачные попытки синтезировать крупные алмазы. О том же свидетельствовал и основательный опыт синтеза других драгоценных камней, особенно рубина и сапфира. Крупные монокристаллы, применяемые в лазерных устройствах, приходилось выращивать не минуты, и даже не часы и не сутки, а месяцы и годы.

Упоминая здесь о предмете, носящем научное название «монокристалл», мы оставили в стороне то обстоятельство, что монокристалл алмаза, тем более крупный монокристалл, — это, проще говоря, бриллиант. И что обладание такими монокристаллами, тем более крупными, есть синоним величайшего богатства. Ну, а если бриллианты можно делать прямо в печке… Ведь с этого, собственно говоря, все и началось. Не о шлифовальных же пастах думали Хэнней и Каразин, Муассан и Хрущов, да и все остальные, перечисленные или не перечисленные в предыдущих главах лица.

Несмотря на то, что монархов осталось на свете мало, несмотря на то, что к середине нашего века уже только пятая часть всех добываемых в алмазных копях камней шла на украшения, а четыре пятых — на нужды техники, блеск «Куинура», «Куллинана», «Орлова» и прочих знаменитых бриллиантов и по сей день намного затмевает в нашем сознании куда менее заметную на первый взгляд и куда более весомую роль алмазов, скромно именуемых техническими. Сказывается, возможно, та же инерция сознания, из-за которой для многих и поныне история — это жизнь и деяния цезарей…

Когда в 50-х годах XX в. были синтезированы еще только первые крупицы алмаза величиной всего лишь в доли миллиметра, искусственные куллинаны стали казаться близкими и достижимыми.

Но годы шли, а бриллианты не появлялись.

…Весной 1971 г. о получении алмазов ювелирного качества величиной в 1 карат сообщила все та же компания «Дженерал электрик». Как и следовало ожидать, монокристаллы синтезировались в более мягких условиях, чем «обычные» алмазы, — при давлении 57 000 атм и температуре около 1500°. В таких условиях пересыщение расплава углеродом было меньшим, чем при обычном синтезе, а значит, процесс продолжался дольше. Стронг и Уинторф, авторы процесса, сообщили, что выращивание длилось около десяти суток. Технические подробности, естественно, не приводились.

Разумеется, создать «машину», которая сможет работать полторы недели при температуре закипающей ста-г ли, более чем непросто. Чрезвычайно трудно сохранить и постоянство условий синтеза, в том числе состав среды, без чего вырастить правильный кристалл невозможно. Не исключено, что в этом процессе графит вообще не использовали, а исходным материалом служил алмазный порошок — в таком случае легче избежать графитовой грязи. Очень может быть, что и размеры камеры были побольше, чем при синтезе порошка.

С точки зрения науки, с точки зрения развития техники сверхвысоких давлений все это очень интересно. Однако практический смысл такого синтеза, по-видимому, невелик. Кристалл получается гораздо дороже, чем природный алмаз того же размера и качества. Может быть, в сто, а может, в тысячу раз дороже найденного в Якутии или в Южной Африке. Во всяком случае, сама компания «Дженерал электрик» утверждает, что изготовлять синтетические алмазы весом в карат методом Стронга — Уинторфа не имеет смысла. Может быть, потому, что «процесс, в результате которого природа создает крупные алмазы, нами еще не понят как следует, мы можем лишь строить о нем различные предположения», — таково пояснение Герберта Стронга.

Означает ли это, что синтез крупных монокристаллов, алмазов для электроники, синтез сантиметровых (почему бы и нет?) бриллиантов для нашего века надо считать неосуществимым?

Нет, не значит. Начинать все равно как-то надо. Первые крупинки, если не пылинки, были у Холла и у Верещагина тоже дороже природных. А во что обошлись те, что синтезировал Лундблад, — кто сосчитает?

История искусственных монокристаллов алмаза еще коротка и вряд ли кому известна во всех подробностях. Бесстрастные протоколы опытов, где все, надо полагать, расписано по дням и минутам, пока еще упрятаны в сейфах, и уже поэтому сразу расставить участников по «призовым местам» невозможно. Тем не менее (нет ничего тайного, что рано или поздно не стало бы явным), кое-что становится понемногу достоянием гласности.

Примерно в то время, когда Эрику Лундбладу и его сотрудникам удался в Стокгольме первый синтез, алмазами заинтересовался (вполне самостоятельно) студент Борис Спицин, учившийся на третьем курсе Томского университета. Побудительной причиной послужила лекция по кристаллографии, в которой говорилось об эпитаксиальном синтезе — так называется простое, в сущности очень естественное явление — если в какой-то среде зародилась какая-то кристаллическая структура, то на ее поверхности легче расти такой же структуре, чем какой-либо другой. Подобно тому, как по выкладываемой каменщиком кирпичной стенке проще продолжать класть такие же кирпичи, чем строительные блоки другой формы.

Лектор говорил о квасцах, а Спицину пришел в голову вот какой вопрос: если закон есть закон, то и на грани алмаза в каком-нибудь науглероженном растворе (допустим, в расплавленном чугуне) должен наращиваться алмаз?

На той лекции, однако, Спицин промолчал, оставшись при своем размышлении. А потом и вовсе позабыл о нем. И вспомнил только через два года, когда уже на пятом курсе прочел (это было в 1955 г.), что синтез алмазов удался.

Спицин отправился в библиотеку, прочитал все, что там нашлось по интересующему его предмету, и… И не нашел в научной литературе ни подтверждения своим сомнениям, ни их опровержения.

Что с того, что у настойчивых экспериментаторов в XIX в. не было и не могло быть давления в 100 000 атм? Это еще ничего не доказывает — вполне достаточно, если была алмазная затравка, крупица алмазного кристалла, структура, на которой может продолжаться эпитаксиальный рост. И чтобы вокруг этого первоначального кристаллика был углерод…

По мнению Спицина, такие эксперименты ставились, и неоднократно. Вот, скажем, в «Химических и оптических записях» Ломоносова есть такое место: «При кристаллизации ставить на зарод почечные алмазы». (Слово «почечные» означает, по-видимому, малые размеры кристаллов, которые Ломоносов хотел использовать как затравку — русские купцы взвешивали драгоценные камни, пользуясь почками растений как разновесами.)

Правда, удалось ли Ломоносову «поставить на зарод» алмаз — неизвестно. Но зато известны опыты более позднего времени, когда исследователи пытались, сотворить алмаз, пользуясь затравкой — крупинкой природного алмаза. Так действовали в 1880 г. Хэнней и в 1911 г. Болтон. Интересно, что ни тот, ни другой не пользовался графитом: Хэнней хотел нарастить алмаз углеродом костяного масла, Болтон — углеродом метана.

Почему?

А что получилось у Муассана, если — теперь это хорошо известно — максимальное давление внутри остывающего железного слитка не может превысить 1000 атм?

Следует ли не принимать во внимание опыты профессора Руффа (1917 г.; опыт «по Муассану», обработка осадка последовательно серной, соляной, плавиковой, азотной кислотами при температуре до 1000°): 0,5 мг остатка от 10-килограммового слитка — пылинки размером 0,5 мм, которые не реагировали с хлором, тонули в жидкости с удельным весом 3,0 и светились желтым светом в ультрафиолетовых лучах…

В 1938 г. опыт Муассана повторил американец Гершей, и журнал «Сайентифик Америкен» в конце того же года сообщил, что у него получился алмаз весом 7зо карата и длиной 1,5 мм…

Не доверять даже самым солидным данным? Но вот и Лейпунский, уж на что критически относился ко всем попыткам синтеза, а ведь и он допускал, что у Муассана получились настоящие алмазы.

Как это могло быть?

Настолько серьезно этот вопрос беспокоил студента-пятикурсника, что после окончания университета он отправился из Томска в Москву — искать ответа в Институте физической химии Академии наук. Член-корреспондент АН СССР Борис Владимирович Дерягин, специалист по физико-химическим процессам, происходящим на поверхности веществ, заинтересовался соображениями Спицина. И Борис Владимирович Спицин остался в институте — аспирантом у Дерягина.

30
{"b":"566037","o":1}