«Начала» являют собой блестящий синтез трех веков достижений древнегреческой математики. Значение этого наследия было оценено уже в эпоху самого Евклида. На протяжении всей истории — в римский период, арабский, в Средние века и вплоть до наших дней — этот текст множество раз публиковали в более или менее полном виде.
Впервые он был издан в 370 году Теоном Александрийским; его версия может считаться основной традицией, на которую опираются все последующие.
Одной из самых великих научных традиций является арабская. Математики IX-X веков из багдадского Дома мудрости (эта эпоха и место имели огромное историческое значение для мировой культуры, науки в общем и для математики в частности) оценили значение «Начал», и благодаря их исследованиям и комментариям (из которых надо особо отметить комментарии Аль-Харизи и Ибн Малика) труды Евклида и других греческих мыслителей начиная с XII века стали возвращаться в Европу. К тому же периоду относятся переводы «Начал» на латынь, над которыми особенно потрудились переводчики из знаменитой толедской школы и, в меньшей мере, школы города Риполь.
МАНУСКРИПТЫ И ИЗДАНИЯ
Самый древний сохранившийся манускрипт «Начал» Евклида относится к X веку (если не учитывать отрывок, датированный между 75 и 125 годами). Он был обнаружен на свалке города Оксиринх, близ современной Эль-Бахнасы, в 160 км от Каира, во время раскопок, проводимых Бернардом Гренфеллом и Артуром Хантом для Оксфордского университета в 1896— 1897 годах. В таблице кратко перечислены основные рукописи «Начал». От некоторых остался всего один экземпляр.
Место
Библиотека
Век
Оксфорд
Бодлианская библиотека
IX
Ватикан
Библиотека Ватикана
X
Флоренция
Библиотека Лауренциана
X
Болонья
Городская библиотека
XI
Вена
Национальная библиотека
XII (?)
Париж
Национальная библиотека
XII
Рукопись, хранящаяся в Оксфорде, была создана в 881 году Стефаном, опытным византийским каллиграфом, по заказу Арефы Кесарийского, архиепископа одноименного города в Каппадокии. Она написана широкими, почти квадратными буквами, с легким наклоном влево. В таком же стиле выполнен знаменитый манускрипт «Диалогов» Платона, также сделанный по приказу Арефы и хранящийся в той же библиотеке.
О важности сочинения Евклида для средневековой Европы свидетельствует тот факт, что его первое печатное издание, о котором нам известно, относится к 1482 году. Его выполнил немецкий книгопечатник Эрхард Ратдольт. В его версию, сделанную на основе латинского перевода англичанина Аделарда Батского в XII веке (возможно, с арабского оригинала), вошли комментарии Джованни Кампано.
Основные версии «Начал»
Год
Город
Автор
Язык
Заголовок
1482
Венеция
Джованни Кампано
Латынь (с арабского)
Preclarissimum opus elementorum Euclidis megarensis una cum commends Campani perspicacissimi in arte geometrica.
1505
Венеция
Бартоломео Дзамберти
Латынь (с греческого)
Euclidis megarensis philosophi platonici mathematicorum disciplinarum Janitores... elementorum libri XIII cum expositione Theonis insignis mathematici.
1509
Венеция
Кампано, переработка Луки Пачоли
Латынь
1533
Базель
Греческий
1572
Пезаро
Латынь
Euclidis elementorum libri XV, una cum scholiis antiquis.
1574
Рим
Латынь
Euclidis Elementorum libri XV.
1654
Антверпен
Латынь (книги 1—IV; XI-XII)
Elementa geometriae planae et solidae.
1703
Оксфорд
Греческий и латынь
1804 1808
Париж
Греческий, латынь и французский
Euclides quae supersunt. Les Oeuvres d'Euclide.
1883 1888
Копенгаген
Латынь
Euclidis opera Omnia.
Кампано, вдохновившись «Арифметикой» Джордано Неморарио (XII век), вводит аксиоматику книг по арифметике и, в частности, утверждает, что «не существует бесконечных нисходящих цепочек натуральных чисел». Издание Ратдольта содержит более 400 гравюр и может считаться настоящим шедевром, поскольку это одно из первых печатных изданий математического текста. Вскоре за ним последовало еще одно, опирающееся на основную традицию, — работы Бартоломео Дзамберти, а в 1572 году — издание Федерико Коммандино, самый точный из всех переводов на латынь, ставший основой для последующих важных переизданий, в частности издания Грегори. В 1533 году было напечатано знаменитое editio princeps[1 «Первое издание» (лат.). — Примеч. перев.] то есть официальное издание на греческом, подготовленное Симоном Тренером. Последнее издание, указанное в таблице, — editio pnnceps на латыни Йохана Людвига Гейберга, созданное между 1883 и 1888 годами. Оно содержит полное собрание сочинений Евклида в восьми томах и дополнение из работ Евклида и других мыслителей.
Помимо главных изданий «Начал» (их всего около десятка) и editio pnnceps Гейберга, существуют и другие, очень любопытные, например версия Христофора Клавия, иезуита и главы Римского колледжа, который добавил к 468 предложениям Евклида еще 671, выдуманное им самим. Именно это издание иезуит Маттео Риччи увез с собой в Китай, где оно было переведено на китайский.
Всего вышесказанного уже достаточно, чтобы отдать дань уважения этому блестящему научному труду. Его можно поставить в один ряд с сочинениями Гомера, Софокла, Платона и Аристотеля. Это вершина греческой культуры, дошедшая до нас в письменном виде.
УКРАДЕННЫЙ ЕВКЛИД
Наполеон Бонапарт любил вывозить из завоеванных городов самые разные сокровища и украшать ими французские музеи. Например, так он поступил с Розеттским камнем и квадригой лошадей с собора Святого Марка в Венеции, которая несколько лет венчала Триумфальную арку. После вторжения в Италию Наполеон увез в Париж рукопись «Начал» Евклида, хранившуюся в библиотеке Ватикана. Несколько лет спустя, в 1804 году, парижанин Франсуа Пейрар, вдохновившись этим манускриптом, опубликовал «Начала евклидовой геометрии». Он обратил внимание на то, что этот текст основан не на версии Теона Александрийского, как все остальные, а на каком-то более древнем источнике, из-за чего можно предположить: он больше соответствует оригиналу. Позже рукопись была возвращена в библиотеку Ватикана.
Эпилог
XIX век в геометрии завершился появлением фундаментального труда гениального немецкого математика Давида Гильберта «Основания геометрии» (Grundlagen der Geometrie). С ним сформировался (хотя может показаться, что еще формируется) определенный подход к пониманию математики. Гильберт аксиоматизировал евклидову геометрию, но сделал это, не прибегая к геометрической интуиции. Он говорил: