Литмир - Электронная Библиотека
Содержание  
A
A

И, наконец, наиболее важным компонентом во всей системе артикулированных предпосылок позиции Эйнштейна следует считать условие «объективных локальных причин». Согласно этому условию, если во время измерения «две системы уже не взаимодействуют, то в результате каких бы то ни было операций над первой системой во второй системе уже не может получиться никаких реальных изменений». Это условие в статье Эйнштейна, Подольского, Розена специально не выделялось, о нем просто говорилось по ходу дела, видимо потому, что оно рассматривалось как нечто само собой разумеющееся. Между тем, именно это условие и было по существу тем стержнем, который фиксировал концептуальную перспективу, в рамках которой Эйнштейн рассматривал всю проблему физической реальности и полноты ее квантовомеханического описания. Позднее, уже в послевоенные годы, Эйнштейн неоднократно подчеркивал, что отказ от этого условия был бы, по его мнению, равносилен отказу от возможности объективного установления «эмпирически проверяемых законов в привычном для нас смысле».

Для Эйнштейна тезис о независимости измерений, производимых в разных, достаточно удаленных друг от друга местах пространства, и тезис о полноте квантовомеханического описания физической реальности находились во взаимоисключающем отношении, и поскольку принцип независимости измерений, или условие локальности, по Эйнштейну, имеет статус необходимой и фундаментальной предпосылки научного исследования, то, очевидно, необходимо отказаться от предположения о полноте квантовомеханического описания реальности. Такова вкратце суть аргумента Эйнштейна, Подольского, Розена в свете более позднего взгляда Эйнштейна на квантовую механику.

Но почему все-таки вышеуказанные тезисы в глазах Эйнштейна исключали друг друга? Чтобы ответить на этот вопрос, необходимо реконструировать внутреннюю логику его позиции. Не претендуя на полное решение этой задачи, выскажем лишь некоторые соображения по этому поводу. Обратим внимание, что принцип «объективных локальных причин» формулируется Эйнштейном применительно к макроскопическим системам просто как общее условие физической независимости (но не логико-информационной, как ошибочно понимал его М.Борн) измерений, производимых в разных местах пространства. Отдавая в теоретико-методологическом плане приоритет этому условию, Эйнштейн совершал коммуникативную инверсию своей позиции, вставая на позицию идеализированного экспериментатора, оперирующего макропеременными приборами в обычном трехмерном пространстве и наблюдающего за последовательностью макроскопических событий. Это позиция творца специальной теории относительности. Эти события экспериментатор интерпретирует как процесс детектирования и регистрации частиц, обладающих неким свойством, именуемым «спином». Частицы могут иметь разные ориентации этого свойства, например, «вверх» или «вниз» в отношении направления магнитного поля, которое устанавливает экспериментатор. Теперь у него возникает следующий вопрос: может ли он рассматривать эти отдельные макроскопические события в качеств физически независимых от макропеременных, контролируемых его коллегой в области достаточно удаленной от него, например, в области отделенной пространственно-подобным интервалом? Вопрос, как видим, непосредственно касается макроскопической ситуации в обычном трехмерном пространстве, и ответ на него, с точки зрения Эйнштейна, в облике экспериментатора должен быть положительным. А как обстоит дело с точки зрения квантовой механики? Здесь Эйнштейн был готов на компромисс принятия онтологии «потенциальностей» Гейзенберга, подчиняя ее, однако, своему условию локальности как познавательного принципа, справедливого для обычного трехмерного пространства, претендующего, кстати, на описание «наблюдаемых в эксперименте явлений». В результате этой операции и возникает неприемлемый для Эйнштейна образ локально «мерцающей» квантовой реальности. Действительно, допустим, что в процедуре измерения, произведенной над первой частицей, реализуется одна из потенциальностей наблюдаемой физической системы. Но какую именно систему наблюдает экспериментатор? В рамках локальной картины ответ ясен: он наблюдает частицу, точнее говоря, проекцию ее спина на заданное им направление магнитного поля. В таком случае получается, что вторая частица по какому-то скрытому от нас сверхсветовому коммуникативному каналу мгновенно «узнает», в каком направлении ей надо иметь определенное значение проекции своего спина. Квантовая механика, таким образом, нарушает условие «объективных локальных причин» на уровне отдельных макрособытий и в этом смысле является нелокальной теорией. Конечно, правомерность таких рассуждений может быть легко поставлена под сомнение. Ведь вся картина нелокально связанных или мгновенно сообщающихся между собой частиц возникает лишь тогда, когда мы пытаемся осмыслить квантовую взаимосвязанность удаленных друг от друга частиц в рамках «реального» трехмерного пространства и органически связанной с ним концепции, по которой каждая из этих систем предполагается физически локализуемой, то есть имеющей некие фундаментальные качества или свойства, не зависящие сколь-нибудь существенным образом от взаимосвязей между ними. Но, если мы будем придерживаться последовательно квантовомеханической точки зрения, то нам придется расстаться с этой картиной. Но как же понимать все это с позиции идеализированного экспериментатора? Примет ли он позицию квантового теоретика, сообщающего ему, что с позиции квантовой механики эволюция квантовой системы из N частиц описыватся решением уравнения Шредингера не в обычном трехмерном, а в абстрактном, 3N-мерном конфигурационном пространстве? Поэтому рассматривать «волны вероятности» в обычном пространстве не следует, это ведет к парадоксам. Нужно твердо усвоить, что волновая функция не является классическим понятием и, в этом смысле, она, по словам М.Борна, «недоступна человеческому пониманию». Или только пониманию нашего экспериментатора?

Но, чтобы не потерять окончательно общий язык с экспериментатором, ему можно пояснить, что Борн, скорее всего, имел в виду не его ограниченность, а ограниченность понимания посредством «наглядных» образов, относительно которых явно или неявно предполагается, что они с неизбежностью являются макроскопическими и классическими, и что выйти за их рамки возможно лишь на достаточно высоком уровне математической абстракции. И вообще, пояснить ему, что «прогресс в физике всегда был однозначно связан с переходом от наглядного к абстрактному». Так что надеяться на лучшее будущее не стоит.

К сказанному можно еще добавить, что тезис о невозможности получения когерентной классической картины квантовых феноменов на основе данных, получаемых при различных, взаимонесовместимых экспериментальных условиях, является ядром всей концепции дополнительности Н.Бора. И, наконец, возможно еще одним доводом для несговорчивого экспериментатора могло оказаться одно из главных возражений Бора Эйнштейну, состоявшее в указании на двусмысленность, неоднозначность использования понятия «физическая реальнсть» вне точно определенного экспериментального контекста, вне коммуникации, связывающего ученого и исследуемый им фрагмент физической вселенной.

И все же эти доводы могут и не убедить нашего оппонента. Он может возразить, сказав, что не стоит преувеличивать различие между наглядно образным и абстрактным мышлением. Согласно представлениям современной психологии, это две в равной мере необходимые и непрерывно взаимодействующие между собой формы отображения объективной реальности, являющиеся компонентами целостной «внутренней структуры мыслительного процесса как такового...». К тому же «жизненный мир» экспериментатора в лаборатории вполне нагляден и классичен. Бор не уставал говорить, что отказ от наглядных представлений затрагивает только состояние атомных объектов; при этом полностью сохраняются основы описания экспериментальных действий, равно как и наша свобода их выбирать». Но наш экспериментатор имеет право спросить, а не ограничивает ли эту свободу выбора его коллега, оперирующий своими приборами где-то вдали от него? Кроме того, можно еще вспомнить, что, опять-таки согласно Н.Бору, формализм квантовой теории в целом применим только к замкнутым явлениям. «Всякое атомное явление, — писал Бор, — замкнуто в том смысле, что его наблюдение основано на регистрации при помощи усилительных устройств, действующих необратимо... В этой связи важно понять, что формализм квантовой механики допускает хорошо определенное применение только к такого рода замкнутым явлениям» [31]. Однако в рассматриваемом случае выполнимость этого условия не ясна, что в свою очередь дает право сомневаться в применимости для его анализа квантового формализма, по крайней мере, в его существующем виде. Кстати, аналогичный вывод делает также и Яух, подходя к этому вопросу с позиций квантовологической аксиоматики.

34
{"b":"557511","o":1}