Литмир - Электронная Библиотека
Содержание  
A
A

Однако, как и электроны, биосинтетические реакции нуждаются в дополнительном количестве энергии, которое в наших клетках (см. главу 3) обеспечивается клеточным дыханием. «Вдохновившись» дыханием, мы переместим несколько высокоэнергетических электронов в ячейку клетки, которая выполняет функцию электростанции. Здесь электроны туннелируют от одного фермента к другому, как и в естественной дыхательной цепи, и образуют АТФ — носитель молекулярной энергии клетки. Перед нами стоит новая задача: сконструировать в клетке дыхательный центр и оценить роль квантовой механики в этом важнейшем биологическом процессе.

Оснащенная источником электронов и дополнительной энергии, наша квантовая фоточувствительная клетка способна производить собственные биомолекулы. Однако для этого она нуждается в источнике сырья для биомолекул, а попросту — в пище. Итак, мы обеспечиваем нашу клетку таким источником — простым сахаром, а точнее, глюкозой, растворенной в нашем лабораторном «первичном океане» (среде, в которой пребывает наша клетка). Нам потребуется встроить в клетку работающие на энергии АТФ станции переработки сахара, закачивающие глюкозу в клетку и при помощи других ферментов, способных управлять отдельными атомами молекул глюкозы (здесь мы имеем дело уже с квантовой инженерией), образующие более сложные биомолекулы. Многие из этих ферментов обычно используют туннелирование электронов и протонов (об этом мы говорили в главе 3), однако наша задача снова будет заключаться в том, чтобы смоделировать два варианта клеток (один — с возможностью использовать свойства квантового мира, другой — без), чтобы проверить, действительно ли квантовая механика обеспечивает эти движущие силы жизни необходимой энергией.

Проектируя нашу квантовую протоклетку, мы должны будем предусмотреть еще одно ее свойство — способность укрощать разрушительные силы молекулярного шума, чтобы поддерживать квантовую когерентность. В настоящее время нам слишком мало известно о том, каким образом это удается живой клетке, поэтому мы едва ли способны искусственно создать клетку с таким свойством. Здесь могут быть задействованы многие факторы: например, известно, что избыточное количество молекул в среде живой клетки влияет на ход многих биохимических реакций[198], а также способствует сдерживанию разрушительного влияния молекулярного шума. Поэтому нам придется заполнить протоклетку биомолекулами практически «под завязку», чтобы создать подобие заполненной молекулами среды живой клетки в надежде, что это поможет направить силу термодинамических шквалов и порывов на поддержание квантовой когерентности.

И все же наша квантовая протоклетка представляет собой слишком капризное судно — на его борту заранее должны присутствовать все необходимые ферменты. Чтобы она обладала самодостаточностью, мы должны создать в одной из ее ячеек центр управления. В центр управления необходимо поместить геном из искусственно созданной ДНК, способной кодировать все необходимые клетке белки, а также механизм, превращающий код, основанный на квантовых протонах, в белки. Это напоминает эксперимент Крейга Вентера в рамках синтетического подхода «сверху вниз» с той лишь разницей, что наш геном будет встроен в неживую протоклетку. И последнее: мы могли бы обеспечить нашу протоклетку системой навигации. В этом случае протоклетка будет обладать молекулярным нюхом, способным определять расположение питательных веществ посредством обонятельного рецептора, действующего на основе квантовой запутанности (принцип действия обонятельного рецептора описан в главе 5), а также молекулярным мотором, который будет обеспечивать движение протоклетки по «первичному океану». Возможно, мы могли бы создать в клетке квантовую навигационную систему, которой обладает описанная нами в начале книги малиновка. Подобная система позволила бы протоклетке без труда ориентироваться в лабораторном «первичном океане».

Описанный нами проект представляет собой эпизод из области научной фантастики. Он не более реален, чем шекспировский Ариэль. В описании мы опустили огромное количество подробностей и, в целях простого и ясного изложения, не упомянули о многих других колоссально трудных задачах, с которыми сталкиваются ученые, берущиеся за проект на основе принципа «снизу вверх» синтетической биологии. Если бы какая-нибудь группа ученых и взялась за подобный проект, стало бы ясно, что невозможно запустить все необходимые процессы одновременно, как это предусматривает наш воображаемый алгоритм. Для начала в протоклетке необходимо обеспечить самый простой или самый понятный процесс, возможно фотосинтез. Этот первый шаг уже будет огромным достижением, а полученная протоклетка — идеальной моделью для исследования роли квантовой когерентности в процессе фотосинтеза. Если бы создание такой протоклетки было возможным, следующие этапы эксперимента заключались бы в усложнении ее строения. В конце концов, мы, возможно, могли бы получить синтезированную живую клетку. Мы предполагаем, что подобный проект осуществим при условии тесного сотрудничества синтетической биологии с квантовой механикой. Мы уверены, что механизм жизни не работает, если не имеет связи с квантовым миром.

Итак, если взяться за детальную разработку описанного нами проекта, возможно, в результате ученым удастся создать новую форму жизни, а значит, дать человечеству поистине революционную технологию — искусственную жизнь, функционирующую на краю квантового и видимого миров. Синтезированные живые клетки могли бы стать строительным материалом для экоустойчивых и самодостаточных «живых» зданий. Такие клетки могли бы выполнять задачи микрохирургов, внедряемых в организм человека для замены или восстановления поврежденных или изношенных тканей. Фантастические возможности квантовой биологии, которые мы рассмотрели в данной книге (фотосинтез и действие ферментов, квантовые обонятельные рецепторы и геномы, квантовые компасы и, возможно, даже квантовый мозг), могут однажды быть использованы для создания дивного нового мира синтезированных живых организмов, которые избавили бы своих создателей от рутинной работы по удовлетворению большинства потребностей.

Однако самое важное, на наш взгляд, заключается в следующем: возможность создать жизнь с нуля ответит наконец на главный вопрос биологии «Что есть жизнь?» и утверждение Фейнмана «Мы не понимаем того, чего не можем создать» больше не будет относиться к таинственному феномену жизни. Если нам удастся создать искусственную жизнь, мы наконец сможем утверждать, что понимаем жизнь и ее удивительную способность укрощать силы хаоса и плыть на всех парусах по узкому проливу — границе видимого и квантового миров.

…затмил я солнце,
Мятежный ветер подчинил себе,
В лазурь небес взметнул зеленый вал
И разбудил грохочущие громы.
Уильям Шекспир. Буря. Акт V, сцена 1

Эпилог: квантовая жизнь

Малиновка, о которой мы говорили в главе 1, благополучно перезимовала под средиземноморским солнцем и теперь порхает между редкими лесами и древними камнями Карфагена в Тунисе. Она кормится мухами, жуками, червями и зернами — иными словами, биомассой, созданной из воздуха и света настоящими квантовыми фотосинтетическими машинами, которые мы называем растениями и животными. Но вот наступает время, когда полуденное солнце греет нестерпимо горячо и осушает ручьи в лесу. Выжженный солнцем лес перестает быть гостеприимным домом для нашей родственницы воробья. Приходит время улетать.

День начал клониться к вечеру, и крохотная птичка вспорхнула на высокую ветку кедра. Она осторожно чистит клювом перышки, как делала это несколько месяцев назад. Она слушает щебет других птиц, которые тоже готовятся к долгому перелету. Когда последние солнечные лучи исчезают за горизонтом, малиновка поворачивается на север, расправляет крылья и взмывает в вечернее небо.

вернуться

198

Tan C., Saurabh S., Bruchez M. P., Schwartz R. and Leduc P. Molecular crowding shapes gene expression in synthetic cellular nanosystems // Nature Nanotechnology, 2013. — Vol. 8: 8. — P. 602–608; Cheung M. S., Klimov D. and Thirumalai D. Molecular crowding enhances native state stability and refolding rates of globular proteins // Proceedings of the National Academy of Sciences, 2005. — Vol. 102: 13.

86
{"b":"556099","o":1}