Литмир - Электронная Библиотека
Содержание  
A
A

Ответ на этот вопрос связан с тем, как организованы частицы в атомах и как они движутся внутри больших (макроскопических) объектов. Внутри твердых тел атомы и молекулы обычно распределены беспорядочно и совершают неравномерные колебания около собственных состояний равновесия; внутри жидкости или газа атомы и молекулы постоянно находятся в состоянии беспорядочного движения. Эти факторы — беспорядочное распределение, колебание и движение — обусловливают быструю утрату частицами их волновых квантовых свойств. Иными словами, совокупность внутренних факторов и без физиков совершает «квантовое измерение» каждой из частиц, из которых состоит какое-либо вещество, заставляя их менять свое поведение и придавая миру, который нас окружает, привычные формы и краски. Чтобы увидеть квантовые чудеса частиц, вам нужно оказаться в очень необычном месте (например, внутри Солнца), заглянуть в самые глубины микромира (с помощью таких приборов, как электронный микроскоп) или аккуратно выставить в одну линию квантовые частицы так, чтобы они прошлись у вас перед глазами стройным маршем (как это делают спины ядер водорода внутри вашего тела, когда вы лежите внутри МР-томографа, пока не выключат магниты и ориентация спина ядра снова не станет случайной, вновь нейтрализуя квантовые связи). Благодаря подобной молекулярной рандомизации мы и можем обходиться без квантовой механики большую часть времени: квантовые чудеса не работают внутри окружающих нас видимых объектов, которые состоят из случайно ориентированных молекул, находящихся в постоянном движении.

Большую часть времени… но не всегда. Шультен обнаружил, что скорость быстрой триплетной химической реакции находит объяснение только в том случае, если обратиться к удивительному квантовому свойству запутанности. Но ведь быстрая триплетная реакция всегда является такой — быстрой. А участвует в ней всего только пара молекул. Если бы эта реакция была причиной поразительных навигационных способностей малиновки, она бы оказывала продолжительное воздействие на весь организм птицы. Поэтому утверждение, что внутренний птичий магнитный компас работает на основе квантовой запутанности, находилось на совершенно ином уровне по сравнению с утверждением о том, что запутанность каким-то образом связана с некой замысловатой химической реакцией, в которой участвует только пара частиц. Но и это утверждение было встречено немалым скептицизмом. Считалось, что живые клетки состоят в основном из воды и биомолекул, которые находятся в состоянии возбуждения, что приводит к постоянному измерению их состояния и утрате странных квантовых свойств. Под словом «измерение» мы, разумеется, не подразумеваем того, что молекулы воды или биомолекулы выполняют измерения подобно тому, как мы измеряем вес или температуру объекта, а затем записываем эти показатели на бумагу или на жесткий диск компьютера либо просто запоминаем их. Мы говорим о том, что происходит, когда молекула воды сталкивается с одной из запутанных частиц: ее последующее движение будет зависеть от состояния этой частицы. Если бы вы исследовали движение молекулы воды после столкновения с частицей, вы бы смогли сделать вывод о некоторых свойствах этой частицы. Поэтому в каком-то смысле молекула воды выполнила экспериментальное «измерение», поскольку ее движение фиксирует состояние запутанной пары частиц независимо от того, существует ли наблюдатель их столкновения. Даже подобное случайное измерение обычно приводит к нарушению состояния запутанности. Вот почему утверждение о том, что частицы способны сохранять настолько тонко организованные квантовые состояния запутанности в теплом пространстве сложно устроенных живых клеток, принималось многими за нелепую идею, граничащую с безумием.

Тем не менее в последние годы наши познания в этой области значительно расширились, и не только в связи с изучением птиц. Было обнаружено, что такие квантовые явления, как суперпозиция и туннельный эффект, являются частью многих биологических процессов — от поглощения солнечного света растениями до синтеза биомолекул во всех клетках нашего организма. Даже чувство обоняния или набор генов, который мы наследуем от родителей, могут зависеть от таинственного квантового мира. Статьи с результатами исследований в области квантовой биологии регулярно появляются на страницах самых престижных научных журналов мира. Более того, уже существует небольшая (но постоянно растущая) группа ученых, уверенных в значительной, даже решающей роли законов квантовой механики в самом явлении жизни, а также в том, что жизнь и есть то самое состояние, которому таинственные квантовые свойства присущи на границе микро- и макромиров.

Нам стало ясно, что таких ученых пока очень мало, когда мы решили провести международный симпозиум по квантовой биологии в Университете Суррея в сентябре 2012 года: на симпозиум приехали почти все специалисты в этой области, и все они разместились в небольшом лекционном зале. Однако в сферу квантовой биологии приходит все больше ученых, вдохновленных открытиями, которые подтверждают значительную роль квантовой механики в биологических процессах. Одной из самых увлекательных исследовательских областей, способной серьезно повлиять на развитие новых квантовых технологий, является та, что с недавних пор приоткрывает ученым тайну способности мистических квантовых свойств сохраняться в теплой, влажной и беспорядочной среде живых организмов.

Чтобы в полной мере представить себе значимость этих открытий, мы должны сперва ответить на вопрос, который обманчиво может показаться вам простым: что есть жизнь?

2. Что такое жизнь

Одна из самых успешных в истории человечества научных программ была запущена 20 августа 1977 года: в небо над Флоридой поднялся космический аппарат «Вояджер-2», за которым спустя две недели отправился аппарат-близнец «Вояджер-1». Через два года «Вояджер-1» достиг первого пункта назначения — Юпитера, сфотографировал вихревые облака и знаменитое Большое красное пятно газового гиганта, а затем пролетел над ледяной поверхностью одного из спутников Юпитера, Ганимеда, и зафиксировал извержение вулкана на другом спутнике, Ио. Тем временем «Вояджер-2» летел совсем по другой траектории. В августе 1981 аппарат приблизился к Сатурну и стал отправлять на Землю удивительно красивые снимки его колец — прекрасного ожерелья планеты, изящно сплетенного из миллионов камней и небольших спутников. Прошло еще около десяти лет, прежде чем в 1990 году, 14 февраля, «Вояджер-1» сделал один из самых поразительных космических снимков — фото крошечного голубого пятнышка на зернисто-сером фоне.

За последние 50 лет благодаря космическим аппаратам, запущенным в том числе в рамках программы «Вояджер», человечеству удалось высадиться на Луну, удаленно исследовать долины Марса и выжженные пустыни Венеры и даже увидеть, как комета врезается в атмосферу Юпитера. Но в основном космические аппараты обнаруживали и исследовали горные породы… очень много разных пород. Кстати, можно сказать, что исследование космических объектов в основном представляет собой исследование пород, начиная с тонны лунного грунта, доставленного на Землю экипажем «Аполлона-11», или микроскопических фрагментов кометы, за которыми летал космический аппарат НАСА «Стардаст», до результатов встречи зонда «Розетта» с кометой в 2014 году или исследования Красной планеты марсоходом «Кьюриосити». Много, очень много космических пород.

Разумеется, образцы космических пород — объекты, представляющие для нас огромный интерес: их структура и состав дают ключи к разгадке тайны происхождения Солнечной системы, формирования планет и даже событий, предшествовавших образованию Солнца. Но для большинства людей, не разбирающихся в геологии, марсианский хондрит (разновидность каменистых метеоритов с низким содержанием металлов) ничем не отличается от лунного троктолита (метеорит, в больших пропорциях содержащий железо и магний). Тем не менее в нашей Солнечной системе есть одно укромное местечко, где основные составляющие всевозможных пород и камней представлены в таком многообразии форм, свойств и химического состава, что даже один грамм горной породы по содержанию будет богаче любого другого образца из разных уголков Вселенной. Это место, разумеется, то самое бледное голубое пятнышко, которое сфотографировал «Вояджер-1». Мы называем это пятнышко Землей. Самое поразительное то, что все это многообразие веществ, обусловивших уникальность поверхности нашей планеты, способствовало зарождению жизни.

7
{"b":"556099","o":1}