Ткань обонятельного эпителия занимает небольшую площадь (у человека — всего лишь 3 кубических сантиметра, что составляет размер небольшой почтовой марки), однако она пронизана секретирующими клетками и миллионами обонятельных нейронов — нервных клеток, которые выполняют в обонянии ту же функцию, что палочки и колбочки в сетчатке глаза выполняют для зрения. Передний кончик обонятельного нерва напоминает метелку — многолучевую головку, на которой оболочка клетки расходится на множество ворсистых ресничек. Эта метелка, состоящая из тонких ресничек, выступает из клетки и ловит пролетающие мимо молекулы запахов. Задний кончик клетки напоминает ручку метелки и представляет собой аксон клетки, или нерв, протянутый через небольшую косточку в задней части носовой полости прямо в мозг, а точнее, в отдел мозга под названием «обонятельная луковица».
Оставшуюся часть главы мы посоветовали бы вам дочитать, положив перед собой апельсин. Лучше разрезать его на дольки так, чтобы резкий аромат фрукта достиг вашего обонятельного эпителия. Можете даже положить одну дольку в рот — тогда ее аромат попадет на ткань эпителия через ретроназальные пути. Как и все естественные запахи, аромат апельсина представляет собой сложную смесь сотен летучих компонентов, самый пахучий из которых — лимонен[65]. Об этом веществе мы поговорим подробно и проследим путь от молекулы лимонена до запаха апельсина.
Лимонен, как может подсказать его название, в большом количестве содержится в цитрусовых, например в апельсинах и лимонах, и формирует их резкий аромат и вкус. Это вещество относится к классу углеводородов под названием «терпены». Терпены входят в состав эфирных масел и обладают сильным запахом, который входит в состав аромата сосны, розы, винограда и шишек. Если хотите, поставьте перед собой вместо апельсина стакан пива или вина. Лимонен содержится в разных частях цитрусовых растений, включая листья, но в наибольшей концентрации он обнаруживается в кожуре плода, из которой его можно буквально выжимать.
Лимонен — это летучая жидкость, которая постепенно испаряется при комнатной температуре. Итак, из вашего апельсина в воздух разлетаются миллионы молекул лимонена. Большинство из них покинет комнату через дверь и окна, а некоторые молекулы окажутся недалеко от вашего носа. Вы будете дышать, и цитрусовый запах — то есть молекулы лимонена — попадет в ноздри и дойдет до назального эпителия, пронизанного примерно десятью миллионами обонятельных нейронов.
Когда молекулы лимонена будут пролетать мимо щеточек обонятельного эпителия, некоторые из них обязательно попадут в ловушку обонятельных нейронов. Даже одной молекулы лимонена достаточно для того, чтобы в мембране нейрона открылся крошечный канал, через который в клетку начинают проникать положительно заряженные ионы кальция. Если в ловушку эпителия попадает около 35 молекул лимонена, последующий поток ионов, направляющихся в клетку, сравним со слабым электрическим током около 1 пА[66]. Поток такой силы действует как стимул для возникновения волны электрического сигнала, известного как потенциал действия (об этом мы подробнее поговорим в главе 8), распространяющегося по ручке метелки, то есть по аксону клетки. Этот сигнал достигает обонятельной луковицы внутри головного мозга. Далее происходит обработка сигнала в нейронных сетях, и тогда вы наконец получаете «послание материальной действительности» в виде резкого цитрусового аромата.
Ключевым моментом данного процесса является, безусловно, захват молекулы обонятельным нейроном. Так как же это происходит? По аналогии с механизмом зрения и светочувствительными колбочками и палочками сетчатки глаза (которые, кстати, представляют собой разновидность нейронов), предполагалось, что обоняние также осуществляется некими поверхностными рецепторами обонятельного эпителия. Однако еще в 1970-е годы ученые ничего не знали о природе и свойствах обонятельных рецепторов.
Ричард Эксел родился в Бруклине (Нью-Йорк) в 1948 году. Он был первым ребенком в семье беженцев из оккупированной нацистами Польши. Его детство ничем не отличалось от детства любого бруклинского мальчишки того времени: между играми в стикбол (разновидность уличного бейсбола, в которой базами-подушечками служат канализационные люки, а битами — ручки от метел) и баскетбол на улицах и во дворах Ричард бегал по поручениям отца-портного. В 11 лет он получил свою первую работу курьера — доставлял неисправные вставные челюсти дантистам на починку. В 12 лет он укладывал ковровые покрытия, в 13 подавал солонину и копчености в местной забегаловке. Хозяином забегаловки был русский, который частенько цитировал Шекспира, нарезая капусту и приобщая Ричарда к миру великой культуры, лежащему где-то за пределами забегаловок и баскетбольных площадок. Так Ричард стал любителем литературы. Его интеллектуальные способности заметил один из учителей средней школы, впоследствии вдохновивший Эксела, причем успешно, на поступление в Колумбийский университет на литературный факультет.
С первых дней учебы Эксел погрузился в интеллектуальный водоворот университетской жизни 1960-х. Чтобы ему хватало на активный образ жизни, подразумевавший посещение многочисленных вечеринок, он устроился на работу в молекулярно-генетическую лабораторию мойщиком лабораторной посуды. Эксел сильно увлекся новой интересной наукой и вскоре уволился с безнадежной должности мойщика посуды, устроившись в ту же лабораторию ассистентом. Перед ним встал выбор между литературой и наукой, и Эксел в конце концов решил продолжать учебу по специальности «Генетика», однако вскоре вынужден был перейти на медицинский факультет, чтобы избежать призыва во Вьетнам. Медицина давалась ему так же плохо, как и мытье стекла. Он не мог услышать сердечный шум, не мог рассмотреть и описать сетчатку глаза; однажды во время операции его очки упали в разрезанную брюшную полость и он каким-то образом умудрился пришить к пациенту палец хирурга. В конце концов, он получил диплом, но с него было взято обещание никогда не практиковать медицину на живых пациентах. Он вернулся в Колумбийский университет на отделение патологической анатомии, однако через год заведующий отделением запретил Экселу работать также и с мертвыми.
Осознав, что медицина не является его призванием, Эксел решил вернуться к исследовательской деятельности в Колумбийском университете. Вскоре он достиг успехов и даже изобрел новую технологию введения чужеродной ДНК в клетки млекопитающих, ставшую отправным пунктом генно-инженерной и биотехнологической революции конца XX века. Кроме того, это изобретение принесло Колумбийскому университету доход в сотни миллионов долларов от лицензионных соглашений — неплохая выручка от вложений в студенческие стипендии.
К 1980-м Эксел все чаще задавался вопросом, может ли молекулярная биология помочь разгадать самую таинственную из всех научных загадок: как работает человеческий мозг. Он оставил изучение поведения генов и сосредоточился на изучении генов поведения с целью «выявить, как высшие мозговые центры порождают „перцепт“ (умственный образ), скажем, запаха сирени, или кофе, или скунса…»[67] Его первым шагом в нейронауке стало изучение поведения морской улитки в период откладывания яиц. Примерно в это же время в его лабораторию пришла работать талантливая исследовательница Линда Бак. Иммунолог по образованию (Университет Далласа), Бак увлеклась новым направлением молекулярных нейронаук и пришла работать в лабораторию Эксела, где проводились передовые исследования в этой новой области. Вместе Эксел и Бак провели серию выдающихся экспериментов с целью изучить молекулярный механизм обоняния. Первая задача, стоявшая перед ними, заключалась в том, чтобы идентифицировать рецепторные молекулы, которые, как предполагалось, находятся на поверхности обонятельных нейронов, захватывают и определяют различные молекулы запахов. Исходя из того, что было известно о других сенсорных клетках, Эксел и Бак догадались, что рецепторы обоняния работают на основе каких-то белков, появляющихся из оболочки клетки и связывающих пролетающие мимо молекулы запахов. Однако в то время рецепторы запахов еще не были выделены, поэтому ученые не знали, как выглядят эти рецепторы и тем более как они работают. Команда исследователей отталкивалась от предположения о том, что эти загадочные рецепторы относятся к группе рецепторов, сопряженных с G-белком, поскольку известно, что данная группа рецепторов также реагирует на химические сигналы, например активизируется гормонами.