Литмир - Электронная Библиотека
Содержание  
A
A

Если модулирующая частота из радиоприемника «встретится» в магнитофоне с сигналом внутреннего генератора на каком-то нелинейном элементе, произойдет умножение частот с выделением разностной составляющей, лежащей в звуковом диапазоне. А уж она-то обязательно запишется на пленку.

Предлагаемый внешний фильтр не даст «просочиться» паразитному сигналу от приемника в магнитофон и в то же время «пропустит» полезный звуковой сигнал. Принципиальная схема одного канала фильтра показана на рис. 13.43, а его частотная характеристика — на рис. 13.44, б. Для стереофонического варианта нужно иметь два канала.

Путеводитель в мир электроники. Книга 2 - _239.jpg

Рис. 13.43. Фильтр низкой частоты 4-го порядка для радиоприемника

Путеводитель в мир электроники. Книга 2 - _240.jpg

Рис. 13.44. Частотные характеристики фильтра для радиоприемника

Чрезвычайно важную задачу выполняют полосовые фильтры. С радиочастотными полосовыми фильтрами нам довелось иметь дело в главе, посвященной радиотехнике, — это колебательные контуры и фильтры сосредоточенной селекции тракта ПЧ. Часто полосовые фильтры нужны и в области частот, слышимых человеческим ухом. Как показывает опыт, в этом диапазоне конструктивные размеры индуктивных элементов становятся громоздкими, и далеко не всегда пригодными к практическому использованию. Выручают операционные усилители, позволяющие построить полосовой фильтр вообще без применения индуктивностей.

Схема самого простого полосового фильтра на ОУ показана на рис. 13.45.

Путеводитель в мир электроники. Книга 2 - _241.jpg

Рис. 13.45. Полосовой фильтр на ОУ и его частотная характеристика

Улавливаете связь между ФНЧ и ФПЧ? Это — тоже фильтр на основе структуры Рауха. Его свойства определяются только расположением резисторов и конденсаторов.

Коэффициент усиления фильтра на резонансе:

Путеводитель в мир электроники. Книга 2 - _242.jpg

Резонансная частота (в Гц):

Путеводитель в мир электроники. Книга 2 - _243.jpg

Ширина полосы пропускания при С3 = С4 = С (в Гц):

Путеводитель в мир электроники. Книга 2 - _244.jpg

Резонансная частота и полоса пропускания — очень знакомые нам характеристики. Резонансную частоту можно в небольших пределах регулировать резистором R2. К сожалению, этот фильтр обладает рядом существенных недостатков: попытка изменения коэффициента усиления приведет к изменению всех остальных параметров. Кроме того, схема обладает повышенной чувствительностью к технологическому разбросу параметров элементов и не позволяет из-за этого строить узкополосные фильтры, которые иногда очень нужны. И все же в радиолюбительской практике такие простые фильтры встречаются.

Повышенной стабильностью (временной, температурной), низкой чувствительностью к допускам номиналов элементов и независимостью настроек основных параметров обладает биквадратный фильтр. Мы приведем только схему биквадратного полосового фильтра, так как он может в наибольшей степени пригодиться радиолюбителю в одиночном варианте. Его схема показана на рис. 13.46, а частотная характеристика повторяет «частотку» полосового фильтра на основе структуры Рауха.

Путеводитель в мир электроники. Книга 2 - _245.jpg

Рис. 13.46. Биквадратный полосовой фильтр

Этот фильтр требует ни много ни мало, а три операционных усилителя, но зато его основные характеристики определяются по простейшим выражениям:

Путеводитель в мир электроники. Книга 2 - _246.jpg

Такой фильтр удобно собирать на микросхемах, в которых размещено в одном корпусе четыре независимых ОУ с общим питанием, например с применением серий К1401, КР1446.

О заграждающих фильтрах мы говорить не будем, поскольку строятся они по специфическим малораспространенным схемам. Основное назначение заграждающих фильтров — постановка «заслона» какой-либо нежелательной частоте сигнала. Например, сильный фон переменною тока частотой 50 Гц можно убрать из сигнала, поступающего на вход усилителя, узкополосным заграждающим фильтром. При необходимости решить такую задачу читатель найдет все необходимые расчетные соотношения и схемы в списке литературы, прилагаемой к этой главе [2–5].

Литература

1. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 5. — М.: СОЛОН-Р, 2002.

2. Быстров Ю. А. и др. Электронные цепи и устройства. — СПб.: Энергоатомиздат, 1999.

3. Марше Ж. Операционные усилители и их применение. — Л.: Энергия, 1974.

4. Мячин Ю. А. 180 аналоговых микросхем. — М.: Радио, 1993.

5. Шило В. Л. Линейные интегральные схемы. — М.: Советское радио, 1974.

Путеводитель в мир электроники. Книга 2 - _247.jpg

Глава 14

ЛОГИКА ДЛЯ ЦИФРОВОГО МИРА

Мы ежедневно сталкиваемся с миром цифровой техники — узнаем время по электронным часам, ведем расчеты на карманных микрокалькуляторах и персональных компьютерах. Цифровые устройства считают пассажиров на пропускных пунктах в метро. Цифровые кассовые аппараты установлены в большинстве магазинов, цифровые кредитные карточки принимают уличные телефоны-автоматы. Цифровые блоки управления встраиваются сегодня во всю бытовую технику: в телевизоры, музыкальные центры, микроволновые печи, пылесосы, стиральные машины, холодильники. Цифровая техника позволяет свести до минимума участие человека в производственных процессах: многие серийные линии выпуска продукции управляются компьютерами.

Основатель корпорации «Intel» Роберт Нойс писал о вычислительной технике следующее: «Так же, как промышленная революция дала человеку возможность применять большую физическую силу, чем могли обеспечить его собственные мускулы, цифровая электроника увеличила силу его интеллекта». Давайте же познакомимся с основами цифровых устройств, занявших сегодня в электронике одно из ведущих мест.

Немного об истории возникновения цифровой техники

Прогресс — это лучшее, а не только новое.

Лопе де Вега

Вспомним «юморящего» на компьютерные темы Егора Холмогорова и попытаемся понять, когда началась эпоха цифровой микроэлектроники. «Следующей за изобретением транзистора крупной вехой в человеческой истории стало изобретение в 11 году «компьютерной эры» (1958) первой интегральной схемы. На сей раз постарался 34-летний американец и по совместительству — инженер-электротехник компании Texas Instruments Джек Килби, решивший зачем-то запихать несколько различных полупроводниковых элементов в Один корпус. Работы над реализацией этой уникальной идеи длились несколько лет, и в конце концов Килби удалось достичь положительного результата: он умудрился разместить в одном полупроводниковом блоке схему, состоящую аж из десяти транзисторов. Спустя еще полтора года, когда все это наконец заработало, он представил результат своего творчества восхищенной публике, проложив для населения Земли еще одну ступеньку в будущее — к появлению первого в мире полупроводникового микропроцессора». А фотография той самой первой микросхемы, в свое время обошедшей множество мировых научно-технических журналов, представлена на лазерном компакт-диске, прилагаемом к этой книге. Она мало напоминает современные образцы, но… лиха беда начало!

52
{"b":"545321","o":1}