Литмир - Электронная Библиотека
A
A

В процессе переваривания пищи лактоза подвергается ферментативному гидролизу в результате воздействия лактазы, секретируемой мукозными клетками кишечника. У грудных младенцев активность этого фермента очень высока, однако в кишечнике взрослых людей лактазная активность наблюдается лишь у жителей севера Европы и некоторых африканских племен. У большинства взрослых людей, в том числе у жителей Востока, арабов, евреев, многих африканцев, индийцев и жителей Средиземноморья, лактазная активность в кишечнике очень низка, что часто приводит к непереносимости (интолерантности) лактозы. Описанная особенность обусловлена генетически. Причина непереносимости лактозы связана с тем, что этот дисахарид может всасываться в кишечнике только после гидролиза на моносахаридные компоненты: при низкой лактазной активности неусвоенная лактоза накапливается в кишечнике; в результате после потребления молока у человека с непереносимостью лактозы возникает тяжелый понос и боли в животе.

Трегалоза состоит из двух молекул α D-глюкозы, соединенных 1—1 α гликозидной связью. Трегалоза входит в состав гемолимфы насекомых, также выделяется из некоторых грибов. Является нередуцирующим дисахаридом (Рисунок 20). Трегалоза является транспортной формой моносахаридов в кровеносной системе насекомых.

Дисахариды растений

Сахароза – гетеродисахарид, состоящий из глюкозы и фруктозы, соединенных β (1—2) гликозидной связью (Рисунок 20). Сахароза является нередуцирующим сахаром. Сахарозу синтезируют многие растения, у высших же животных она отсутствует. В отличие от мальтозы и лактозы у сахарозы нет свободного аномерного атома углерода, поскольку оба аномерных атома моносахаридных остатков связаны друг с другом; поэтому сахароза не является восстанавливающим сахаром. Сахароза основной промежуточный продукт фотосинтеза. У многих растений именно в форме сахарозы транспортируются по сосудистой системе сахара из листьев к другим частям растения. Преимущество сахарозы перед глюкозой как транспортной формы сахаров заключается, вероятно, в том, что ее аномерные атомы углерода связаны друг с другом: это предохраняет сахарозу от атаки окислительных или гидролитических ферментов в процессе ее переноса из одной части растений в другую. Животные не могут усваивать сахарозу как таковую, однако она становится доступной для усвоения после воздействия фермента сахаразы (другое его название – инвертаза), локализованного в клетках, выстилающих тонкий кишечник. Этот фермент катализирует расщепление сахарозы на D-глюкозу и D-фруктозу, которые легко проникают в кровоток.

Полисахариды

В природе большинство углеводов представлено в виде полисахаридов с высокой молекулярной массой. Биологическое значение ряда полисахаридов состоит в том, что одни обеспечивают накопление моносахаридов для энергетического обмена в нерастворимой, а значит осмотически неактивной форме, другие же служат структурными элементами клеточных стенок и соединительной ткани. При полном гидролизе под действием кислоты или специфических ферментов полисахариды расщепляются с образованием моносахаридов или их производных.

Полисахариды, называемые также гликанами, отличаются друг от друга как природой составляющих их моносахаридных остатков, так и длиной и степенью разветвленности цепей. Их можно разделить на два типа: гомополисахариды, состоящие из остатков одного и того же моносахарида, и гетерополисахариды, содержащие остатки двух или большего числа моносахаридов. Пример гомополисахарида резервный углевод крахмал, состоящий из остатков только D-глюкозы. Примером гетерополисахарида может служить содержащаяся в соединительной ткани гиалуроновая кислота, которая состоит из чередующихся остатков двух разных моносахаридов.

В отличие от белков полисахариды нельзя характеризовать строго определенной молекулярной массой: как правило, они представлены смесями высокомолекулярных соединений; в зависимости от метаболических потребностей клеток моносахаридные остатки могут ферментативно присоединяться к полисахаридам или же отщепляться от них. Также, как и дисахариды, полисахариды делятся на редуцирующие и нередуцирующие. По наличию свободной альдегидной группы, которая, окисляясь, восстанавливает ионы некоторых металлов.

По функции полисахариды делят на структурные и запасающие.

Запасающие полисахариды обеспечивают накопление моносахаридов, участвующих в энергетическом обмене в виде компактных нерастворимых структур (включений). Нерастворимость обеспечивает отсутствие влияния на осмотическое давление в клетке.

Структурные полисахариды служат внеклеточными опорными элементами в стенках клеток одноклеточных микроорганизмов, грибов и высших растений, а также входят в состав соединительной ткани позвоночных и экзоскелета членистоногих. Структурные полисахариды защищают клетки, ткани и органы, придают им форму и поддерживают ее. У различных организмов запасающие и структурные полисахариды различаются.

Запасающие полисахариды животных и грибов

Структурная биохимия - image20_56717db25401b51938101f74_jpg.jpeg

Рисунок 21. Структура гликогена

Гликоген – полисахарид, в виде которого углеводы запасаются в организме животного. Его часто называют животным крахмалом. В наибольшем количестве гликоген содержится в печени, где на его долю приходится до 7% общего веса органа; гликоген имеется также в скелетных мышцах. В клетках печени гликоген присутствует в виде крупных гранул, состоящих в свою очередь из меньших гранул; последние образованы единичными сильно разветвленными молекулами гликогена со средней молекулярной массой в несколько миллионов. С этими же гранулами прочно связаны ферменты, ответственные за синтез и распад гликогена. Гликоген откладывается в виде гранул в цитоплазме клетки.

У грибов гликоген запасается в клетках гифов.

Гликоген – редуцирующий гомополисахарид, образованный остатками α-D-глюкопиранозы. Гликоген характеризуется более разветвленной структурой, чем амилопектин, линейные отрезки цепи включают 11—18 остатков α-D-глюкопиранозы [соединенных α (1—4) -гликозидными связями], в точках ветвления остатки соединены α (1—6) -гликозидными связями (Рисунок 21).

Запасающие полисахариды бактерий

Самый распространенный полисахарид бактерий – гликоген, чья структура была рассмотрена в предыдущем разделе. Но также встречаются и другие типы (Рисунок 22).

Структурная биохимия - image21_55edee3cb67adce978712a2e_jpg.jpeg

Рисунок 22. Структура запасающих полисахаридов бактерий

Декстран.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

5
{"b":"429892","o":1}