Вычисления
Года через три-четыре все поймут, что это явление — лишь частный случай корпускулярно-волнового дуализма в природе, но в то время де Бройлю пришлось находить верную дорогу ощупью.
Корпускулярно-волновой дуализм
ВОЛНЫ МАТЕРИИ
Де Бройль верил в единство природы, верил искренне и глубоко — как все великие учёные до него. Поэтому он не мог допустить, что луч света — нечто особенное и ни на что другое в природе не похожее. Де Бройль предположил: не только луч света, но и все тела в природе должны обладать и волновыми, и корпускулярными свойствами одновременно. Поэтому, кроме световых волн и частиц материи, в природе должны реально существовать и кванты света, и волны материи.
Такое простое и сильное утверждение нелегко высказать: для этого нужны смелость и вера. Ещё труднее его понять — на это способен лишь непредвзятый ум, привычный к абстрактному мышлению. И это очень трудно представить — природа, доступная восприятию наших пяти чувств, не создала зримых образов, которые могли бы помочь нам в этих усилиях. В самом деле, при слове «частица» вам может прийти на память всё, что угодно, — песчинка, бильярдный шар, летящий камень, но вы никогда не вспомните морские волны или колеблющуюся струну. Для нормального человека это настолько противоречивые образы, что объединить их в один кажется противоестественным.
Всякий рассказ о рождении новой физической теории заведомо неточен даже в устах её создателя: такой рассказ, как правило, использует понятия, которых в момент создания теории не было. У ныне живущих физиков понятие «волна материи» вызывает в сознании некий сложный образ, который ни с чем привычным в окружающем нас мире сравнить нельзя. Образ этот складывается постепенно, при работе с формулами квантовой механики, при решении атомных задач, и рассказать о нём словами довольно трудно. Понятно, что использовать такой сложный и совершенный образ в 1922 году де Бройль не мог, и потому в его тогдашних рассуждениях мы встречаем некий заменитель: образ волны, которая возникает при колебаниях струны.
Хорошо известно, что при ударе по натянутой струне она начинает звучать, и звук этот зависит от длины струны. Механизм возникновения звука также хорошо известен: колебания струны передаются воздуху, и мы воспринимаем уже колебания воздуха, а не колебания струны, которые их породили. Однако между ними существует строгая связь. Например, если мы слышим ноту ля из первой октавы, то в этот момент струна колеблется с частотой ν=440 герц, то есть 440 колебаний в секунду. А поскольку скорость звука в воздухе равна v = 334 м/сек, то длина этих звуковых волн равна
λ = v/ν = 76 см.
Волны материи
При колебаниях струны мы слышим основной тон — такое колебание, когда вся струна колеблется как целое. Однако при её возбуждении возникают и дополнительные колебания — обертоны. Картина колебаний усложняется, на струне появляются «узлы», то есть такие точки, которые остаются неподвижными в процессе колебания. Но всегда строго соблюдается одно условие: на длине струны умещается целое число полуволн λ/2 — Для основного тона на длине струны укладывается ровно половина волны λ/2. Для первого обертона — две половины волны, между которыми расположен Неподвижный «узел», и так далее.
Всё это де Бройль вспомнил, представив себе колеблющуюся струну. Дальнейшее — сравнительно просто.
Свернём наши струны в кольцо и представим себе, что это орбиты электрона в атоме. Теперь заменим движение электрона по ним колебаниями волн, которые «соответствуют электрону», — де Бройль был убеждён, что это разумно. Легко видеть, что при сворачивании струн в кольцо на них появляется дополнительный узел, то есть основной тон растянутой струны превращается в первый обертон кольцевой струны. А это, в свою очередь, означает, что на кольцевой струне может уместиться самое меньшее целая волна λ, а не половина волны λ/2 (как прежде на плоской струне). Таким образом, движение электрона будет устойчивым тогда — и только тогда! — когда на длине орбиты укладывается целое число n «волн электрона» λ. Отсюда следует простое условие:
2π∙r=n∙λ
Де Бройль сравнил это условие с первым постулатом Бора:
m∙v∙r = n∙(h/2π)
и нашёл отсюда «длину волны электрона»:
λ = h/(m∙v)
Волны
Вот и всё. Это действительно просто. Но это так же просто, как формула Планка E=h∙ν, как постулаты Бора, как закон всемирного тяготения Ньютона, — это гениально просто. Такие открытия просты, ибо требуют самых простых понятий. Но в истории развития человеческого духа их считанное число, ибо они меняют самые основы нашего мышления. И никогда нельзя до конца понять, как они были совершены. Это всегда чудо, объяснить которое не под силу даже самим создателям. Они могут лишь строго и просто повторить вслед за Ньютоном: «Я всё время об этом думал».
Де Бройлю было 30 лет, когда он нашёл свою формулу. Но искать её он начал за одиннадцать лет до этого — с тех самых пор, как его брат Морис приехал из Брюсселя, где был секретарём первого Сольвеевского конгресса. Того самого конгресса 1911 года, на котором Планк рассказал о развитии «гипотезы квант». Значительность открытий, живые впечатления старшего брата от общения с великими физиками настолько поразили воображение младшего, что он не смог забыть их даже на войне. Постоянное напряжение мысли разрешилось наконец в 1922 году гипотезой о волнах материи. Теперь де Бройль смог дать новое определение понятию «стационарная орбита»: это такая орбита, на которой укладывается целое число «волн электрона» λ.
Если это действительно так, то проблемы устойчивости атома не существует, ибо в стационарном состоянии электрон подобен струне, колеблющейся в вакууме без трения. Такие колебания не затухают, а потому без внешнего воздействия электрон останется в стационарном состоянии навсегда.
Самое трудное — высказать гипотезу. Это всегда процесс нелогический. Но как только гипотеза высказана, строгие законы логики позволяют извлечь из неё все следствия. Главное из них очевидно: если «волны материи» существуют, то их можно обнаружить и измерить. Их действительно обнаружили и доказали их реальность с той степенью достоверности, какая вообще доступна в физике. Однако случилось это четыре года спустя; и об этом мы расскажем потом.
Свои формулы де Бройль написал в 1923 году — за два года до работ Гейзенберга и Шрёдингера. Их простота и прозрачность основной идеи очень напоминали постулаты Бора. И точно так же, как постулаты Бора, идеи де Бройля ещё не были теорией атома — для этого их необходимо было записать на языке уравнений. Когда Вернер Гейзенберг создал матричную механику, он тем самым превратил идеи Бора в точные формулы и строгие уравнения.
Идеи де Бройля стали началом волновой механики, которую создал Эрвин Шрёдингер.
ОПТИКО-МЕХАНИЧЕСКАЯ АНАЛОГИЯ
Сейчас мы должны усвоить несколько новых фактов. Пусть вначале они покажутся не очень простыми — всё равно понять их необходимо, если мы не хотим без конца повторять гладкие, обкатанные фразы о «таинственной стране микромира», которые лишь засоряют ум, поскольку на поверку ничего реального не означают.
Говорим ли мы об атомах или о квантах — мы вновь и вновь обращаемся к свойствам светового луча. Это не случайно. По существу, в нём заключена почти вся нынешняя физика. Сейчас мы ещё раз — и более пристально — взглянем на его свойства. Для этого нам нужно возвратиться к Исааку Ньютону и вспомнить смысл его спора с Христианом Гюйгенсом о природе светового луча.