Литмир - Электронная Библиотека
A
A

На основе опыта проектирования ПЭС в СССР, Франции и Великобритании в настоящее время на западе Австралии разрабатываются проекты четырех ПЭС в узких заливах, где высота приливов составляет 9—12 м. Общая выработка энергии этих ПЭС должна составлять 11,5 млрд. кВт • ч, т. е. свыше 16% от выработки всех действующих в стране электростанций.

Благоприятные условия для строительства ПЭС имеются в 23 странах мира.

Проблема использования приливной энергии имеет большое значение и для Советского Союза. Впервые эта проблема была выдвинута еще в середине 20-х гг. текущего столетия. Перед Великой Отечественной войной в 1935—1940 гг. разработкой этой проблемы занимались более активно, но война отодвинула ее разрешение. Лишь в послевоенный период удалось более интенсивно заняться ею и успешно ее решить к концу 60-х гг. В 1968 г. в СССР была пущена первая отечественная приливная электростанция в губе Кислой на Мурманском побережье Кольского полуострова. Это пока лишь опытная электростанция мощностью всего 400 кВт. Однако опыт ее успешной работы открывает широкие перспективы в СССР для строительства мощных приливных ПЭС.

Кислогубская ПЭС была сооружена экономичным наплавным методом, впервые разработанным в СССР, сущность которого заключается в том, что станция строилась на берегу в привычных благоприятных условиях, а затем буксировалась по Кольскому заливу в Кислую губу. Этот весьма эффективный способ сооружения ПЭС используется в проектах зарубежных стран.

Опыт сооружения Кислогубской ПЭС используется при строительстве Лумбовской ПЭС на берегу Белого моря, мощность которой должна достигнуть 360 тыс. кВт. Ежегодно она будет вырабатывать около 1 млрд. кВт • ч электроэнергии — почти вдвое больше, чем французская ПЭС на реке Ране. С вводом в строй этой ПЭС и подключением ее в общую энергосистему стабилизируется выработка электроэнергии, столь необходимой ряду энергоемких производств и прежде всего заводам по выплавке алюминия.

Но мощность Лумбовской ПЭС все же недостаточна. Вот почему проектируется создание еще более мощной Мезенской ПЭС в Мезенском заливе мощностью 10 млн. кВт, с годовой выработкой 30 млрд. кВт • ч электроэнергии. С вводом в эксплуатацию Мезенской ПЭС будет обеспечена электроэнергией лесоперерабатывающая промышленность Мезенского района, а «избыток» ее, включенный в общую энергосистему, будет обслуживать другие важнейшие промышленные предприятия Северо-Западного экономического района. В перспективе возможно на месте работы ПЭС создать производство водорода, кислорода, аммиака и других химических продуктов. Кроме того, создание плотины при Мезенской ПЭС поможет наладить нормальное судоходство в низовьях реки Мезень, избавив ее от «блуждания» русла, и даст возможность создать глубоководный порт.

А в перспективе — создание Кулойской ПЭС в устье реки Кулой, впадающей в Мезенский залив. Но самой мощной будет Беломорская приливная электростанция. Плановая мощность станции 14 млн. кВт, а годовая выработка электроэнергии — в 36 млрд. кВт • ч. В здании ПЭС будет расположено 2000 турбин. Беломорская ПЭС, включенная сначала в единую энергетическую систему европейской части СССР, а затем и в единую энергетическую систему всего Советского Союза, смогла бы, прежде всего, полностью удовлетворить электроэнергией потребности населения и промышленных предприятий европейской части СССР в часы ее наибольшего потребления, т. е. в часы «пик», затем она могла бы постоянно компенсировать недостаток электроэнергии, недовырабатываемый многими ГЭС в засушливые годы; наконец, она дала бы возможность регулировать работу ТЭС, не приспособленных к переменному режиму, а попутно разрешить еще целый ряд проблем, связанных с электрификацией транспорта, удовлетворением электроэнергией ряда энергоемких производств и т. п.

Отдельные участки дальневосточного побережья СССР также перспективны в отношении освоения энергии приливов. Так, в Тугурском и Пенжинском заливах Охотского моря высота приливов достигает 9—13 м, а общие потенциальные ресурсы приливной энергии, по оценкам, составляют здесь свыше 400 млрд. кВт • ч. В настоящее время ведутся изыскательские работы, связанные с обоснованием сооружения здесь ПЭС Так, в Тугурском заливе возможно сооружение ПЭС мощностью 9 млн. кВт и выработкой 25 млрд. кВт • ч электроэнергии. В Пенжинском заливе теоретически возможно сооружение трех ПЭС, которые могли бы дать около 400 млрд. кВт • ч. Однако из-за отсутствия в этом районе потребителей такого количества энергии практически реальной считается электростанция мощностью 1,5 млн. кВт, с выработкой 4,5 млрд. кВт-ч.

Одним из потребителей для дальневосточных ПЭС может быть производство водорода путем электролиза воды. Оно допускает прерывистый режим, соответствующий режиму работы ПЭС. Учитывая, что водородная энергетика — это энергетика будущего, следует считать перспективным использование энергии ПЭС для этой цели.

Сооружение приливных электростанций на Дальнем Востоке может сыграть положительную роль в формировании горно-добывающих комплексов. Кроме того, энергия может быть передана в западные районы Дальнего Востока и Восточной Сибири и в зону Байкало-Амурской магистрали.

Освоение энергии приливов здесь может быть осуществлено в комплексе с извлечением различных элементов из морской воды. В данном случае можно применить способ фильтрования морской воды через избирательно действующие иониты, используя естественное перемещение огромных масс морской воды через водопропускные отверстия плотины. Экспериментальные работы в этом направлении проводятся на Кислогубской ПЭС, и при получении положительных результатов соответствующая установка будет запроектирована при сооружении Тугурской ПЭС.

Вообще же приливная электроэнергия не должна рассматриваться изолированно. Только в комплексе совместно с электроэнергией, вырабатываемой ГЭС, ТЭС и АЭС (атомными электростанциями), можно получить наибольший эффект от использования приливной энергии. Все эти виды электроэнергии дополняют друг друга в единой энергетической системе, где наиболее эффективно используются сильные стороны каждого вида электроэнергии.

Существуют и проекты использования энергии волн. Так, например, предложено использовать энергию волн с помощью оригинального штопорообразного поплавка в виде трубы. Части такой закрытой трубы, попавшие в волну, всплывают, а попавшие между гребнями волны опускаются. Так как эти усилия распределены неравномерно, то возникают вращательные движения. По мнению специалистов, строительство такой волновой станции будет сравнительно дешевым. Такие волновые станции будут использовать энергетические запасы поверхности океана и, как утверждают специалисты, будут весьма экономичны.

В Великобритании разработана обширная программа исследований в области использования энергии морских волн. Наиболее совершенный преобразователь энергии волн изобретен доктором Стефеном Солтером из Эдинбургского университета. Он представляет собой аппарат, снабженный лопастями длиной по 18,3 м, расходящимися под углом от общей оси и качающимися вместе с волнами. С помощью специального механизма лопасти приводят в движение насос, прогоняющий воду через турбину. От 20 до 40 таких аппаратов будет устанавливаться рядом друг с другом в виде цепей длиной 900 м и более.

Аппарат Солтера — единственный аппарат, который использует энергию как горизонтального, так и вертикального движения волн. Благодаря этому его коэффициент полезного действия приближается к 85 % по сравнению с 50 % в других системах.

По проведенным подсчетам, метровый отрезок волны «несет» от 40 до 100 кВт энергии, пригодной к практическому использованию. Основываясь на этих данных, один такой генератор может вырабатывать 50 МВт электроэнергии. Дюжина установок, каждая длиной 90 км, может полностью удовлетворить энергетические потребности Великобритании.

Энергия волн в небольших масштабах практически уже используется в Японии, где более 300 буев и маяков питаются электроэнергией, вырабатываемой генераторами, приводимыми в движение морскими волнами. Успешно действует и плавучий маяк Мадрасского порта в Индии, на котором установлен электрогенератор, приводимый в действие энергией морских волн.

8
{"b":"225034","o":1}