Литмир - Электронная Библиотека
Содержание  
A
A

Отсутствие интереса к «математической истине», исповедуемое формалистами, кажется мне очень странной позицией в приложении к философии математики. Более того: она совсем не так прагматична, как представляется. Когда математики проводят свои выкладки, они не намерены постоянно проверять, могут ли они быть сформулированы посредством аксиом и правил вывода некоторой сложной формальной системы. Единственно, что необходимо — быть уверенным в правомерности использования этих рассуждений для установления истины. Доказательство Геделя удовлетворяет этому требованию, так что Pk(k) является математической истиной с таким же правом, как и любое другое утверждение, полученное более стандартным путем с использованием изначально заданных аксиом и правил вывода.

Процедура, которая напрашивается сама собой, заключается в следующем. Давайте положим, что Pk(k) — совершенно верное утверждение (переобозначим его здесь как G0). Тогда мы можем присоединить его к нашей системе в качестве дополнительной аксиомы. Естественно, что наша новая система будет, в свою очередь, содержать новое утверждение Геделя, скажем, G1, которое также будет истинным числовым выражением. Соответственно, мы можем и G1 добавить в нашу систему. Это даст нам новую улучшенную систему, которая также содержит новое утверждение Геделя G2 (опять же совершенно справедливое); и мы сможем снова добавить его к системе, получая следующее утверждение Геделя G3 , которое мы тоже присоединяем — и так далее, повторяя этот процесс неограниченно. Что мы можем сказать о получившейся в результате системе, где мы используем весь набор G0, G1, G2, G3…. как дополнительные аксиомы? Может ли эта система быть полной? Поскольку мы теперь имеем неограниченную (бесконечную) систему аксиом, то возможность применения процедуры Геделя совсем не очевидна. Однако, это последовательное включение утверждений Геделя является в высшей степени систематичной схемой, результат применения которой может быть истолкован как обычная конечная система аксиом и правил вывода. Эта система будет иметь свое собственное утверждение Геделя Gω которое мы также сможем к ней присоединить, получая новую систему и с ней — еще одно утверждение Геделя Gω+1. Продолжая, как и ранее, мы получаем набор утверждений Gω , Gω+1 ,Gω+2 , Gω+3, каждое из которых истинно и может быть включено в нашу формальную систему. Сохраняя свойство строгой систематичности, этот процесс вновь приводит нас к созданию новой системы, которая охватывает все созданные к этому моменту аксиомы. Но и эта система, в свою очередь, имеет свое собственное утверждение Геделя, скажем, Gω+ω— которое можно переписать как Gω2, и мы можем начать всю процедуру заново. В результате этого мы получим новый бесконечный, но систематический, набор аксиом Gω2 , Gω2+1, Gω2+2, и т. д., приводящий к еще одной новой системе — и новому утверждению Геделя Gω3. Воспроизводя весь процесс, мы получаем Gω4 , потом — Gω5 и так далее. И эта схема также будет полностью систематичной и даст свое собственное утверждение Геделя Gω2.

Есть ли логическое завершение у этого процесса? В определенном смысле — нет; но это приводит нас к ряду трудных математических рассуждений, которые здесь не могут быть нами рассмотрены во всех деталях. Вышеуказанная процедура обсуждалась Аланом Тьюрингом в статье[75], опубликованной в 1939 году. Примечательно, что на самом деле любое истинное (в общепринятом смысле) утверждение в арифметике может быть получено путем повторения процедуры «геделизации» такого рода (см. Феферман [1988]). Однако это может вызвать вопрос о том, как мы в действительности решаем, является ли утверждение истинным или ложным. Исключительно важным будет также понять, как на каждом этапе нужно выполнять присоединение бесконечного семейства утверждений Геделя, чтобы они порождали единственную дополнительную аксиому (или конечное число аксиом). Для выполнения такого присоединения требуется определенная алгоритмическая систематизация нашего бесконечного семейства. Чтобы быть уверенным в том, что подобная систематизация корректна и приводит к желаемому результату, нам придется опереться на интуитивные представления, выходящие за рамки системы — точь-в-точь, как мы это сделали для установления истинности Pk(k). Именно эти «прозрения» и не могут быть систематизированы, не говоря о том, что они должны лежать вне сферы действия любой алгоритмической процедуры!

Интуитивная догадка, которая позволила нам установить, что утверждение Геделя Pk(k) является на самом деле истинным, представляет собой разновидность общей процедуры, известной логикам как принцип рефлексии: посредством нее, размышляя над смыслом системы аксиом и правил вывода и убеждаясь в их способности приводить к математическим истинам, можно преобразовывать интуитивные представления в новые математические выражения, невыводимые из тех самых аксиом и правил вывода. То, как нами была выше установлена истинность Pk(k), как раз базировалось на применении этого принципа. Другой принцип рефлексии, имеющий отношение к доказательству Геделя (хотя и не упомянутый выше), опирается на вывод новых математических истин исходя из представления о том, что система аксиом, которую мы полагаем априори адекватной для получения математических истин, является непротиворечивой. Применение принципов рефлексии часто подразумевает размышления о бесконечных множествах, и при этом нужно быть всегда внимательным и остерегаться рассуждений, которые могут привести к парадоксам наподобие расселовского. Принципы рефлексии полностью противопоставляются рассуждениям формалистов. Если использовать их аккуратно, то они позволяют вырваться за жесткие рамки любой формальной системы и получить новые, основанные на интуитивных догадках, представления, которые ранее казались недостижимыми. В математической литературе могло бы быть множество приемлемых результатов, чье доказательство требует «прозрений», далеко выходящих за рамки исходных правил и аксиом стандартной формальной системы арифметики. Все это свидетельствует о том, что деятельность ума, приводящая математиков к суждениям об истине, не опирается непосредственно на некоторую определенную формальную систему. Мы убедились в истинности утверждения Геделя Pk(k), хотя мы и не можем вывести ее из аксиом системы. Этот тип «вйдения», используемый в принципе рефлексии, требует математической интуиции, которая не является результатом чисто алгоритмических операций, представимых в виде некоторой формальной математической системы. Мы вернемся к этому вопросу в главе 10.

Читатель может заметить определенное сходство между рассуждениями, устанавливающими, вопреки «недоказуемости», истинность Pk(k), и парадоксом Рассела. Помимо этого, наблюдается сходство и с доказательством Тьюринга о невозможности существования «машины Тьюринга», которая могла бы решить проблему остановки. Эти сходства не случайны. Между этими тремя событиями имеется прочная историческая нить. Тьюринг пришел к своему доказательству после изучения работ Геделя. Сам Гедель был очень близко знаком с парадоксом Рассела и смог преобразовать те парадоксальные рассуждения, которые уводили слишком далеко в область логических абстракций, в состоятельное математическое доказательство. (Все эти утверждения уходят корнями к диагональному процессу Кантора, описанному в предыдущей главе)

вернуться

75

Статья называлась «Система логики, основанная на порядковых числах», и некоторые читатели будут уже знакомы со способом записи Канторовых порядковых чисел, который я применял для субиндексов. Иерархия логических систем, которые получаются с помощью приведенной мной процедуры, описывается с помощью вычислимых порядковых чисел.

Есть несколько довольно естественных и легко формулируемых математических теорем, которые, если их пытаться доказать путем использования стандартных (введенных Пеано) правил арифметики, привели бы к «гипертрофированной» геделевской процедуре (по числу шагов многократно превосходящей ту, что я описал ранее). Математические доказательства этих теорем по природе своей не зависят от туманных и сомнительных рассуждений, выходящих за рамки аппарата нормального математического доказательства (см. Сморински [1983]).

40
{"b":"219364","o":1}