Рис. 71. Графический образ континуальных преобразований в теореме Пуанкаре — Перельмана (цифрами обозначена последовательность топологических итераций в преобразованиях Пуанкаре — Перельмана)
-226-
Когда мы думаем о Вселенной, она представляется нам чем-то безграничным, как огромное помещение или зал. Однако последние исследования топологии Космоса показывают, что он скорее напоминает баранку или велосипедную шину. Силы гравитации могут закручивать его таким странным образом. Ученые пришли к такому необычному выводу, наблюдая за самыми удаленными от Земли объектами — квазарами. Они сравнили группы объектов в противоположных направлениях и с удивлением обнаружили как будто бы один и тот же объект. Как же это может быть? Космологи предлагают такое объяснение: мы сидим внутри баранки и принимаем световые лучи, распространяющиеся не по прямой. От одного и того же далекого квазара лучи могут прийти на Землю и с одной, и с другой стороны. После долгого и тщательного перебора всех известных квазаров астрофизики нашли несколько групп таких взаимно подобных объектов. Это, конечно, мало для законченной теории и может оказаться просто влиянием случайных факторов. Но вот математики говорят, что, в принципе, баранка ничему не противоречит и эта гипотеза требует дальнейшей разработки и проверки.
Рис. 72. Эволюция метрики замкнутого многообразия Пуанкаре — Перельмана
«Таким образом, будущие перспективы поглощения квантовой физикой не только теории вычисления, но и теории доказательства (у которой есть альтернативное название —
-227-
мета-математика) представляются мне свидетельством двух тенденций. Первая тенденция в том, что человеческое знание в целом продолжало принимать единую структуру, которой оно должно обладать, если оно понятно в том смысле, на который я надеялся. И вторая тенденция в том, что сама единая структура должна состоять из непрерывно углубляющейся и расширяющейся теории фундаментальной физики…
Точно так же, если мы понимаем знание и адаптацию как структуру, которая тянется через множество вселенных, то мы ожидаем, что принципы эпистемологии и эволюции можно прямо выразить в виде законов о структуре Мультиверса. То есть они являются физическими законами, но на исходящем уровне».
Дэвид Дойч. Структура реальности
Так из чего же построен наш Мир? Какова его глубинная фундаментальная структура?
Увы! Если бы нам удалось преодолеть быстротечный поток времени и созвать вневременную научную конференцию, то в философском плане вряд ли современные исследователи смогли бы поразить своими достижениями античных ученых. Парадоксально, но из всего нашего рассказа читатель может сделать единственный вывод: Мир построен из ничего! И это «ничто» совершенно невероятного Макромира, лежащее за гранью восприятия современных самых чувствительных приборов, еще ждет своих исследователей.
В этой небольшой книге мы попытались показать, как замечательное открытие нашего гениального соотечественника — математика Григория Перельмана — позволило в очередной раз отодвинуть границу непознанного в современной объективной реальности окружающего нас Мира и как ученые самоотверженно продвигаются вперед по тернистым тропам знания.
Конечно же, надо понимать, что многие теоретические выводы из теоремы Пуанкаре — Перельмана еще недостаточно ясны и им еще только предстоит занять свое место в общей научной картине Мироздания. Это заставляет очень осторожно относиться к разнообразным околонаучным сенсациям, активно распространяемым вокруг творчества петербургского
-228-
ученого недобросовестными журналистами. В то же время не менее сенсационной была бы популяризация, например, такой интересной темы, как роль построений Г. Я. Перельмана в многомировой интерпретации эволюции Вселенной.
Ну а как же оценила отечественная наука выдающийся вклад петербургского математика? Наверное, Григорий Яковлевич давно уже удостоен степени доктора физико-математических наук без соискания и защиты? Или как минимум избран членом-корреспондентом РАН? Увы, ни ВАК, ни РАН, похоже, даже не задумались над этим вопросом… Известно, что лучше всего оценить проблему можно издалека, поэтому в заключение приведем фрагменты из репортажа замечательного физика-теоретика, философа и бизнесмена, президента нью-йоркской фирмы Math Tech Inc, работающей в сфере высоких технологий, президента Международного комитета интеллектуального сотрудничества, а также научного обозревателя из Нью-Йорка Ю. Б. Магаршака, который всегда просто поражает точностью отдельных формулировок и окончательных выводов: «В математическом мире сенсация. Григорий Перельман, математик из Санкт-Петербурга, доказал гипотезу Пуанкаре, тем самым решив одну из самых знаменитых нерешенных в XX веке математических задач. При этом великий математик не хочет переезжать ни в какую другую страну и ни в какой другой город. Такой вот истинно русский и истинно петербургский патриот. Патриот своей Большой и своей Малой Родины.
Прекрасно! Но не совсем. Дело в том, что Григорий Яковлевич живет крайне скромно, почти бедно, и — внимание! — в настоящее время сотрудником Математического института Стеклова Российской академии наук не является. То есть вообще не работает в системе академии наук. По одним сведениям, он был уволен, по другим — уволился сам. Но так или иначе — формально великий математик сегодня является безработным.
С математиками такие вещи бывали. Тонкие люди, не от мира сего. Нередко странные — с точки зрения окружающего их мира. Галуа, величайший французский математик, создатель того, что сегодня называют теорией групп, умерший совсем рано, но успевший неимоверно много сделать, тоже жил
-229-
непростой жизнью и был, мягко говоря, не вписывающимся в прокрустово ложе традиционного поведения человеком. Жизнь замечательных — и более того, гениальных! — людей, бесспорно, прежде всего их дело. Их поступки порой могут казаться странными. Маниакальная пунктуальность и замкнутость Канта, высунутый язык и подбрасываемые шляпы Эйнштейна, невероятная рассеянность химика и композитора Бородина…»
Мнение Юрия Борисовича целиком и полностью поддерживает израильский ученый Олег Фиговский, академик Европейской академии наук, считающий, что среди всех подразделений российской науки наиболее признанной в мире, бесспорно, является великая математическая школа. Естественно полагать, что в этой области действительными членами и членами-корреспондентами РАН (как и в ее предшественнице Академии наук СССР) являются наиболее достойные. «Посмотрим, — предлагает доктор Фиговский, — на такой критерий, как присуждение Филдсовской медали (аналог Нобелевской премии в математике)».
Zitrus x2 + z2 = y3(1 — y)3
Рис. 73. Живем ли мы внутри черной дыры? «Цитрусовая» поверхность метрики Керра как история нашего Мира от Большого Взрыва до Большого хлопка по теореме Пуанкаре — Перельмана
«Гипотеза космической цензуры утверждает, что сингулярность нельзя увидеть снаружи. В частности, из этой гипотезы следует, что должна существовать некоторая область, откуда невозможно отправить сигналы во внешнюю бесконеч-
-230-
ность. Границей этой области является горизонт событий. Мы можем также использовать теорему о границе, состоящую в том, что горизонт событий является границей прошлого для будущей нулевой бесконечности. Следовательно, мы знаем, что эта граница должна быть нулевой поверхностью, которая является гладкой и генерируется нулевыми геодезическими, содержит неограниченную в будущем нулевую геодезическую, исходящую из каждой точки, в которой отсутствует условие гладкости, и что площадь пространственных сечений не может уменьшаться со временем.
Кроме того… асимптотическим пределом такого пространства-времени в будущем является пространство-время Керра. Это примечательный результат, поскольку метрика Керра является очень интересным точным решением эйнштейновских уравнений в вакууме».
Роджер Пенроуз. Структура пространственно-временных сингулярностей