Литмир - Электронная Библиотека
A
A

Рис. 32. Замкнутое односвязное трехмерное пространство своеобразно иллюстрирует сфера Эшера

Гипотезу Пуанкаре можно было бы сформулировать еще так: любое замкнутое односвязное трехмерное пространство гомео-

-80-

морфно трехмерной сфере или, иначе говоря, все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Для пояснения этой задачи часто используют наглядный пример: если обмотать яблоко резиновой лентой, то, в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют односвязной фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязная, и предположил, что трехмерная сфера тоже односвязна. Говоря простыми словами, если трехмерная поверхность в чем-то похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. Доказать эту гипотезу не могли лучшие математики мира.

Надо вспомнить, что в феноменальном интеллектуальном забеге на «математический приз тысячелетия» участвовали и другие выдающиеся личности. Так, одним из них был видный математик и физик-теоретик китайского происхождения Шин-Тун Яу, которого тоже очень интересовали исследования Гамильтона потоков Риччи. Яу и Гамильтон познакомились в 1970-х годах и вскоре стали близкими друзьями, несмотря на разницу в темпераменте и воспитании.

Рис. 33. Ричард Гамильтон, профессор математики Колумбийского университета (США)

«Гамильтон, сын врача из Цинциннати, опровергал сложившийся стереотип математика как засушенного "ботаника". Дерзкий и непочтительный человек, он ездил верхом, занимался виндсерфингом и менял подружек как перчатки. В его

-81-

жизни математика занимала место еще одного хобби. К сорока девяти годам у него сложилась репутация превосходного лектора, но количество его опубликованных работ было относительно невелико, если не считать базовых статей о потоках Риччи; кроме того, у него практически не было учеников. Перельман прочел статьи Гамильтона, после чего отправился послушать его лекцию в ИПИ. После лекции Перельман поборол свою застенчивость и поговорил с Гамильтоном.

"Мне было очень важно расспросить его кое о чем, — вспоминал Перельман. — Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков".

"Я работал над разными темами, хотя время от времени я мысленно возвращался к потокам Риччи, — добавил Перельман. — Не нужно быть великим математиком, чтобы увидеть, что потоки Риччи могут оказаться полезными в решении проблемы геометризации. Я чувствовал, что мне не хватает знаний. Я продолжал задавать вопросы…"

В 1996 году он написал Гамильтону длинное письмо, обозначив в нем свою идею — с надеждой на сотрудничество. "Он не ответил, — сказал Григорий. — И я решил работать один"».

Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения

Между тем после лекционного турне по американским университетам Перельман вернулся в Россию, где начал трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Решая уравнение потока Риччи (математически это дифференциальное уравнение в частных производных), Григорий Яковлевич получил очень интересные результаты, позволяющие деформировать риманову метрику на многообразии. Однако немного позже он получил довольно неприятный результат, заключающийся в том, что в процессе деформации возможно образование сингулярностей — точек, в которых кривизна стремится к бесконечности. «Сингулярные решения» очень не любят физи-

-82-

ки, обоснованно считая, что их математические модели просто перестают работать в данных точках и ту же деформацию невозможно продолжить. Первый шаг в «войне с сингулярносгями» состоит в их классификации в трехмерном ориентированном случае. Затем при подходе к сингулярности поток останавливают и производят «хирургию» — выбрасывают малую связную компоненту или вырезают «шею», а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой, — после чего продолжают деформацию.

Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме. Процесс, описанный выше, называется «поток Риччи с хирургией».

Рис. 34. Планетарная поверхность как аналог двумерной сферы — одного из основных элементов доказательства теоремы Пуанкаре — Перельмана

Исходя из общепризнанных математических стандартов (да и общих научных), решение проблемы Пуанкаре, предложенное Перельманом, выглядело достаточно необычно. Его форма была конспективно краткой и в то же время фантастически емкой, логика построений поражала филигранной точностью математических высказываний, а сами они были до предела сжаты. Более того, доказательство не имело прямых упоминаний гипотезы Пуанкаре и содержало массу результатов, не имевших отношения к основной теме. Все это вызвало

-83-

в математическом мире шквал комментариев, многие из которых, особенно со стороны китайской математической школы, трудно было назвать объективными. Уже несколько лет спустя анализ доказательства Перельмана, которое занимало всего лишь десятки страниц, насчитывал стостраничные тома, а общее количество оценок и комментариев не уместилось бы и в тысячестраничном фолианте. Между тем различные команды экспертов (надо заметить, что лишь немногие математики имели достаточный уровень для оценки работ Перельмана) раз за разом подтверждали правильность доказательства, предложенного российским гением, при этом не было найдено ни одной погрешности логических построений. В математическом сообществе постепенно зрело взвешенное мнение: Григорию Яковлевичу Перельману действительно удалось решить проблему Пуанкаре и теперь его доказательство вполне можно называть теоремой Пуанкаре — Перельмана.

В ноябре 2002 года Григорий Яковлевич Перельман закончил выкладывать доказательство гипотезы Пуанкаре в Интернете на сайте так называемого электронного архива, чем он занимался на протяжении восьми месяцев, опубликовав три оригинальные работы.

Рис. 35. Топологические метаморфозы (по мотивам М. Эшера)

-84-

стр. отсутствует

-85-

который в эпоху Ферма разработан не был. Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.

Рис. 36. Бесконечность топологической эволюции

«В 1995 году Гамильтон опубликовал статью, в которой обсуждал некоторые идеи по решению задачи Пуанкаре. Прочитав эту статью, Перельман понял, что Гамильтон нисколько не преуспел в преодолении главного препятствия — решении проблемы "перешейков" и "сигар". "Сначала 1992 года он, похоже, не продвинулся ни на йоту, — рассказал нам Перельман. — Возможно, он застрял еще раньше". Тем не менее Перельману казалось, что он знает, как обойти этот камень преткновения».

Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения
16
{"b":"215562","o":1}