Литмир - Электронная Библиотека
Содержание  
A
A

Дреббель изобрел, сконструировал, построил и испытал на Темзе подводную лодку, которая успешно преодолела дистанцию от Вестминстера до Гринвича (около 12 км). Она представляла собой нечто вроде вытянутого в длину водолазного колокола. Приводилась лодка в движение гребцами (от 8 до 12), сидящими внутри на скамейках, установленных так, что ноги людей не доходили до уровня воды. Самое, пожалуй, интересное, это навигационные средства и особенно система жизнеобеспечения экипажа, которые тоже были созданы Дреббелем.

Направление определялось традиционным путем — посредством компаса, но глубина погружения — поновому, посредством ртутного барометра. Это был достаточно точный прибор, так как каждый метр глубины погружения соответствовал 76 мм высоты ртутного столба.

Дня обеспечения дыхания экипажа изобретатель применил селитру, которая при нагревании выделяла кислород. Оценить талант (если не гениальность) Дреббеля можно, если учесть, что кислород был открыт шведским химиком К. Шееле в 1768-1773 гг., т. е. только через полвека. Дреббель, несомненно, был отличным химиком. Об этом свидетельствуют не только разработка им химической системы жизнеобеспечения, но и другие изобретения — детонаторы для мин из гремучей ртути Hg(ONC)2, технологии получения серной кислоты действием азотной кислоты на серу (это отметил Д.И. Менделеев в «Основах химии»), использования солей олова для закрепления цвета при окраске тканей кошенилью. Если ко всему перечисленному выше добавить, что Дреббель был специалистом по оптическим приборам, линзы для которых он шлифовал на изобретенном им самим станке, то этого будет вполне достаточно, чтобы оценить его заслуги.

Дреббель занимался и вечным двигателем. Однако такой человек, как он, не мог пойти стандартным путем, очередной раз изобретая колеса с грузами или водяные мельницы с насосами. Ему было совершенно ясно, что таким путем вечный двигатель не создать.

В 1607 г. он продемонстрировал Иакову I «вечные» часы (запатентованные им еще в 1598 г.), приводимые в движение, естественно, столь же «вечным» двигателем. Однако в отличие от многочисленных других устройств с таким же названием, он действительно в определенном смысле был «вечным». После показа королю часы были выставлены во дворце Этлхем на обозрение всем желающим и вызвали сенсацию среди лондонцев.

В чем же был секрет этих часов (вернее, их двигателя)? Вечные часы Дреббеля работали от привода, использующего, как и любой другой реальный двигатель, единственный возможный источник работы — неравновесности (разности потенциалов) во внешней среде. Мы уже говорили о них — разностях давлений, температур, химических составов и других, заторможенных и незаторможенных, на которых основана вся энергетика.

Но неравновесности, которые использовал Дреббель, — особого рода, отличные от тех, о которых говорилось в гл. 3, хотя они и связаны тоже с разностями температур и давлений. Они могут действовать в совершенно равновесной окружающей среде, во всех точках которой совершенно одинаковые температура и давление. В чем же тут дело и откуда тогда берется работа?

Секрет в том, что разности потенциалов (давлений и температур) здесь все же существуют, но они проявляются не в пространстве, а во времени. Наиболее наглядно это можно пояснить на примере атмосферы. Пусть в том районе, где находится двигатель, в ней нет никаких существенных разностей давлений и температур[84]: все тихо и спокойно. Но общие (во всех точках) давление и температура все же меняются (например, днем и ночью). Эти-то разности и можно использовать для получения работы (в полном согласии с законами термодинамики). Энтропия здесь, естественно, как и при всяком выравнивании разности потенциалов, будет расти.

Простейший способ использования колебаний параметров равновесной окружающей среды — поместить в нее барометр или термометр с подвижными элементами и заставить их работать — делать что-нибудь полезное. Именно так и поступил Дреббель. В его часах находился жидкостной «термоскоп», в котором уровень жидкости поднимался или опускался при изменении температуры и давления. Соединить поплавок на поверхности жидкости с приводом часов было уже делом механики, которой изобретатель владел в совершенстве.

Дреббель объяснял работу своего двигателя действием «солнечного огня». Это было не только в духе времени, но и совершенно правильно с современных позиций. Действительно, все изменения температуры и давления атмосферы определяются в конечном счете солнечным излучением.

Чертеж атмосферного двигателя Дреббеля до нас не дошел. Однако его идея вечного привода повторялась в разных модификациях и многократно использовалась другими изобретателями. По описаниям их приборов можно в определенной степени судить о том, каким мог быть двигатель Дреббеля.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_079.png
Рис 5.11. Барометрический двигатель Кокса: 1 — подвесная чаша с ртутью; 2 — барометрическая трубка: 3 — подвеска; 4 —  блок; 5 — собачка; 6 — храповое колесо; 7 — уравновешивающий груз

Около 1770 г. англичанин Кокс предложил баромерический двигатель. На рис. 5.11 приведена его принципиальная схема. Сосуд, заполненный ртутью, привешен на тросах, соединенных с ободом колеса. Сосуд уравновешивался грузом, установленным на стержне, жестко связанном с колесом. В сосуд погружена барометрическая трубка, закрепленная в верхней части. При изменениях атмосферного давления высота столба ртути в трубке менялась; соответственно часть ртути либо выливалась из трубки в сосуд (падение давления), либо вталкивалась в нее из сосуда (повышение давления).

В первом случае сосуд становился тяжелее и опускался вниз; во втором, напротив, поднимался. Это возвратно-поступательное движение заставляло колесо попеременно вращаться в противоположных направлениях. Посредством установленной на нем собачки храповому колесу сообщалось однонаправленное движение.

Эта машина была довольно крупной (в сосуде было около 200 кг ртути) и могла постоянно заводить большие часы. Вот какой отзыв дал о ней Фергюсон в 1774 г.: «Нет основания полагать, что они когда-нибудь остановятся, поскольку накапливающаяся в них двигательная сила могла бы обеспечивать их ход в течение целого года даже после полного устранения барометра[85]. Должен сказать со всей откровенностью, что, как показывает детальное ознакомление с этими часами, по своей идее и исполнению они представляют собой самый замечательный механизм, который мне когда-либо приходилось видеть…».

Точно так же, как колебания давления, могли использоваться для привода часов и колебания температуры. Очень простой и остроумный двигатель такого рода создал швейцарский часовщик П. Дроз (ок. 1750 г.).

Он изготовил двухслойную пружину (рис. 5.12), внешняя часть которой была сделана из латуни, а внутренняя — из стали. Уже тогда было известно, что коэффициент теплового расширения латуни существенно больше, чем стали. Поэтому при повышении температуры пружина будет сгибаться (сплошная стрелка), а при понижении — распрямляться (штриховая стрелка). С помощью системы рычагов это разнонаправленное движение преобразуется в однонаправленное вращение зубчатого колеса, поднимающего груз или заводящего пружину. Сейчас идея Дроза широко используется в самых разнообразных тепловых приборах.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_080.png
Рис. 5.12. Двигатель П. Дроза для автоматического завода часов с двухслойной биметаллической пружиной

В дальнейшем было создано довольно много таких барических или термических двигателей, конструктивно более совершенных, но повторяющих по существу идеи Кокса и Дроза. Если скрыть весь механизм двигателя под кожухом, то доказать, что это не ppm, практически невозможно.

вернуться

84

Если, разумеется, пренебречь несущественными различиями, не имеющими практического значения.

вернуться

85

Это означает, что мощность этого двигателя была намного больше той, которая требовалась для действия часов.

55
{"b":"197501","o":1}