Заслуги Джоуля были увековечены присвоением его имени единице энергии — джоуль (Дж).
После опубликования работ Джоуля к середине XIX в. закон сохранения энергии (как тогда писали — «силы» или «движения») победил окончательно; дальше речь шла уже о расширении сферы его приложений, уточнении, установлении однозначной терминологии и, наконец, ознакомлении с ним сначала научных работников и инженеров, а затем и всех образованных людей. Доведение этой работы до конца означало и конец ppm-1. Основополагающий вклад в эту работу сделали Г. Гельмгольц (1821-1894 гг.), У. Томсон-Кельвин (1824-1907 гг.), У.Ренкин (1820-1872 гг.) и Р. Клаузиус (1822-1888 гг.). Все попытки опровергнуть или ограничить закон сохранения энергии были обречены на неудачу. Однако для окончательного утверждения и распространения, превращения его в общепринятый фундаментальный закон было необходимо провести то самое установление точных понятий и терминов, о котором говорилось выше. Ведь даже слова «энергия» в первоначальной формулировке закона не было.
2.2. Утверждение закона сохранения энергии. Революция в понятиях и терминах
В предисловии к английскому изданию «Капитала» Ф. Энгельс писал: «В науке каждая новая точка зрения влечет за собой революцию в ее технических терминах» [1.4].
Естественно, что такое событие, как установление радикально новой точки зрения на энергетические превращения, не могло не вызвать и революцию в терминах. Но дело было настолько серьезным, что не могло ограничиться только терминами; упорядочению терминов должно было предшествовать упорядочение понятий. Об этом хорошо в свое время сказал А. Лавуазье, считавший, что каждая наука состоит из ряда фактов, представлений о них (т. е. понятий) и слов, их выражающих (т. е. терминов). Действительно, даже в работах Г. Гельмгольца, не говоря уже о Майере и Джоуле, отсутствовали такие привычные для нас термины, как «энергия» и «работа»; понятия «сила» и «теплота» использовались совсем не в том смысле, который соответствует их однозначной научной трактовке.
В начальной стадии формирования нового закона некоторая расплывчатость в понятиях и терминах вполне естественна; но по мере расширения сферы его применения любая нечеткость в них становится тормозящим фактором. Без ее устранения закон сохранения энергии не мог бы стать всеобщим достоянием и исправно «работать» во всех областях науки и техники.
Усиленное внимание, которое уделяется в науке правильной и четкой терминологии, может вызвать недоумение. Многие, в том числе весьма образованные люди, считают излишней скрупулезностью «вылизывание и шлифовку» терминов, рассуждая примерно так: «Какая в конце концов разница, как назвать ту или другую вещь или понятие. Каждый, кто имеет с ними дело, знает, что это такое. Не зря мудрая народная пословица говорит: «Хоть горшком назови, только в печь не ставь». Важно дело, а не слова».
Такая «философия» даже применительно к обыденной жизни может привести к неприятностям, не говоря уже о науке. Дальше мы увидим на конкретных примерах, относящихся к ppm, к каким последствиям может привести неточная трактовка некоторых энергетических терминов, в частности терминов «теплота», КПД (коэффициент полезного действия), «окружающая среда», «замкнутая система» и других. Поэтому в дальнейшем мы будем очень внимательно относиться к терминам, выделяя там, где необходимо, место для их подробного разбора.
Применительно к закону, установленному С. Карно, Р. Майером и Д. Джоулем, необходимо остановиться на двух основополагающих понятиях, связанных с терминами «энергия» и «теплота» (или «тепло»), а также несколько расширить представление о понятии, относящемся к термину «работа». Без этого дальнейший разбор вопроса о вечном двигателе достаточно полно провести нельзя.
Начнем с понятия «энергия». Впервые оно появилось еще у Аристотеля как обозначение некоего деятельного начала; но оно имело тогда чисто философское значение и никакие количественные оценки здесь не предполагались.
Ввел этот термин в физику и придал ему точный смысл английский механик Т. Юнг (1773-1829 гг.) в «Лекциях по естественной философии» (1807 г.). Это было сделано им применительно к «живой силе» (произведению массы тела на квадрат его скорости), т. е. только к механическому движению; но первый шаг к широкому использованию термина состоялся.
В дальнейшем, после работ основоположников закона сохранения, общий термин «энергия» стал постепенно вытеснять в литературе все другие как единственный для обозначения общей меры движения материи. Особенно большую роль тут сыграли уже упоминавшиеся У. Ренкин и У. Томсон-Кельвин.
Соответственно все законы сохранения движения, независимо от того, в какой форме они проявлялись — механической, тепловой, электромагнитной, химической или биологической, стали частными случаями общего фундаментального закона природы — закона сохранения энергии. После этого уточнились и приобрели однозначный смысл понятия «работа» и «теплота» («тепло»). Если термин «работа», как мы уже говорили, сравнительно быстро приобрел четкий смысл[25], то термин «теплота» долго сохранял остатки влияния теории «теплорода». Живучесть этого влияния (как и многих других старых представлений) оказалась просто необычайной. До сих пор сохранились такие термины, перешедшие из XVIII в., как «теплоемкость», «теплопередача», «тепловой резервуар», «тепловой аккумулятор»; совсем недавно еще употреблялся термин «теплосодержание», замененный на «энтальпию». Все они связаны с теплотой, как с чем-то содержащимся в теле, т. е. по существу с «теплородом». Замена теории теплорода на «механическую теорию тепла» не изменила вначале этой терминологии. Энергию хаотического движения молекул тела, связанную с его температурой, по инерции продолжали называть теплотой, хотя это нечто совсем иное — часть внутренней энергии тела.
Чтобы исключить ошибки при анализе энергетических преобразований, нужно совершенно четко представлять разницу между внутренней энергией, содержащейся в каком-либо теле, и энергией, подводимой к нему (или отводимой от него). Энергия второго вида существует только тогда, когда передается от одного тела к другому. Передача энергии может происходить в двух формах: теплоты и работы. Таким образом, общность теплоты и работы определяется тем, что они представляют собой количественную меру передаваемой энергии. Но между ними есть и существенная разница. Работа — это передача энергии в организованной форме, при которой каждая частица совершает движение (если не считать колебаний) по определенной траектории[26]. Если, например, происходит передача механической энергии посредством пары зубчатых колес, то каждая молекула как ведущей, так и ведомой шестерни совершает движение, связанное с этой системой, строго по окружностям. Если с помощью ворота поднимается груз, то все его частицы двигаются по прямым, и т. д.
Напротив, передача энергии в форме теплоты совершается хаотическим движением частиц. При контакте двух тел с разными температурами молекулы тела, имеющего более высокую температуру, «раскачивают» молекулы более холодного тела так, что средняя скорость первых уменьшается, а вторых увеличивается. В результате определенное количество энергии передается от первого тела ко второму.
Таким образом, и теплота, и работа — это энергия в передаче, в переходе. Если процесса перехода нет — нет ни теплоты, ни работы. Они существуют только в процессе передачи от одного тела к другому, но не могут «содержаться» в них. То, что теплота переходит от одного тела к другому, вовсе не означает, что она сначала содержалась в одном, а потом стала содержаться в другом теле. Просто внутренняя энергия тела, к которому была подведена теплота, выросла, а того, от которого теплота была отведена, соответственно снизилась. Превращение работы в теплоту означает, следовательно, что система, получившая энергию в форме работы от какого-либо тела, превращает его сначала во внутреннюю энергию, а затем отдает ее другому телу в форме теплоты. Так, затрачивая механическую работу на вращение мешалки, погруженной в жидкость, мы увеличиваем внутреннюю энергию этой жидкости: она нагревается, так как получает энергию в форме работы. Затем, давая жидкости охладиться до прежней температуры, мы можем отвести эту энергию в форме теплоты.