Литмир - Электронная Библиотека
Содержание  
A
A

В основание СО АН были положены три принципа – «треугольник Лаврентьева»: комплексное решение больших проблем современной науки, тесная оперативная связь с народным хозяйством и подготовка научных кадров.

Сибирское отделение стало первым в стране крупным комплексным центром, объединившим организационно и территориально разнопрофильные институты.

Помимо самого отделения, состоявшего из 17 академических институтов, был выстроен Академгородок для 50 000 жителей, в котором по тем временам были созданы самые благоприятные условия для жизни и работы. Помимо институтов были образованы Новосибирский государственный университет, Физико-математическая школа, стали проводиться всесибирские физико-математические олимпиады школьников.

Создание Академгородка позволило с блеском решить актуальнейшую проблему науки – омолаживание кадров. На стыке разных специальностей, разных научных школ было совершено множество открытий и решено много научных проблем. При этом благодаря заботам Лаврентьева математика буквально прошивала все научное поле отделения, неизбежно повышая общий уровень решенных задач.

Исключительно плодотворной была также идея комплексного подхода ученых разных институтов к решению определенной научной проблемы – это касалось и создания ускорителей, и сверхзвукового пассажирского самолета, и дезинфекции от паразитов семенного фонда пшеницы…

Академгородок стал в мире образцом удачного решения организации науки. По его примеру были построены научные центры в ряде стран: в Японии (центр Цукуба близ Токио), во Франции (Научно-исследовательский сектор Гренобльского университета) и др.

Созданные Лаврентьевым школы в математике и механике до сих пор успешно развивают его идеи. «Из рук» академика под его любимую поговорку – «Нет ученых без учеников» – вышла целая плеяда всемирно известных ученых – М.В. Келдыш, Л.И. Седов, А.И. Ишлинский, А.И. Маркушевич, А.В. Бицадзе и др.

Ныне СО РАН состоит из Новосибирского и еще 8 научных центров (НЦ). Помимо уникальной Государственной публичной научно-технической библиотеки и Центрального Сибирского ботанического сада, СО РАН насчитывает 102 института. Половина из них сосредоточена в Новосибирском НЦ.

Гордостью отечественной науки стали сибирские научные школы академиков С.Л. Соболева, А.И. Мальцева, Л.В. Канторовича, А.Д. Александрова, А.Г. Аганбегяна, И.Н. Векуа, Л.В. Овсянникова, А.А. Ляпунова, П.Я. Кочиной, Г.И. Марчука, Б.В. Войцеховского, Р.И. Солоухина, А.А. Дерибаса и десятков других выдающихся ученых.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ КОЛМОГОРОВА

Математик, философ, педагог; основатель огромной научной школы; реформатор школьного математического образования; профессор МГУ; академик, академик-секретарь отделения физико-математических наук АН СССР, почетный член нескольких десятков европейских академий и научных сообществ; заведующий кафедрами математики, теории вероятностей, математической логики, математической статистики в МГУ и других вузах, ректор Института математики и механики при МГУ; основатель и руководитель лаборатории атмосферной турбулентности Института теоретической геофизики АН СССР, межфакультетской лаборатории вероятностных и статистических методов; президент Московского математического общества; главный редактор журналов «Успехи математических наук», «Теория вероятностей и ее применения», редакции математики и механики в Издательстве иностранной литературы и т. д.; лауреат Ленинской и Сталинской премий, лауреат Международных премий – Бальцано (аналога Нобелевской по математике), Лобачевского, Вольфа, Премии им. Чебышёва АН СССР; кавалер 7 орденов Ленина, ордена Трудового Красного Знамени, других отечественных и зарубежных орденов и медалей, почетный член нескольких десятков европейских академий и научных сообществ; Герой Социалистического Труда, Андрей Николаевич Колмогоров (1903–1987) является автором фундаментальных трудов по теории функций, математической логике, топологии, дифференциальным уравнениям, функциональному анализу, теории вероятностей и теории информации.

Из двух десятков областей математики, где успешно работал Колмогоров, возьмем одну – теорию вероятностей. Ученый считал ее своей главной специальностью, хотя иногда и называл «теорией неприятностей». Эта «наука о случае» взрастила в нем великого математика и сама приобрела благодаря его научным трудам завершенный вид и стала по математическим понятиям истинной красавицей.

Возникнув в Средневековье как попытка анализа азартных игр, теория вероятностей в XVII в. обрела в трудах Б. Паскаля, П. Ферма, Х. Гюйгенса тот вид, с которым в дальнейшем имели дело уже не предсказатели, а математики. За 100 лет теория вероятностей превратилась в чисто академическую дисциплину, на практике интересовавшуюся разве что теми же азартными играми. Игра в кости, в свою очередь, стимулировала ее развитие. В XIX–XX вв. теория вероятностей, проникнув в астрономию, физику и биологию, начала использоваться в сельском хозяйстве, промышленности, медицине, а с изобретением телевидения и компьютеров стала неотъемлемой частью жизни как основа средств получения и передачи информации. В астрономии нашел применение один из методов этой теории – метод наименьших квадратов, в физике – статистическая механика, в сельском хозяйстве – теория планирования экспериментов и дисперсионный анализ; в промышленности – методы статистического контроля (контрольные карты Шухарта); в социальных науках – теория игр и т. д.

100 великих научных достижений России - i_008.jpg

А.Н. Колмогоров

В 1933 г. Колмогоров опубликовал на немецком языке одну из главных своих работ – «Основные понятия теории вероятностей» (на русском – в 1936 г.). По мнению профессора В.М. Тихомирова, это, «наверное, самое известное произведение Андрея Николаевича, оказавшее столь же огромное влияние на все дальнейшее развитие этой науки, как труды Я. Бернулли и Лапласа».

К тому времени ученого знал весь математический мир. Ведь в него Андрей вступил очень рано даже по меркам математики. Любимцем математики он оставался всю свою жизнь. Да и не только одной царицы наук – скажем, за классические работы по турбулентности математик выдвигался на Нобелевскую премию по физике. Среди ученых ходит афоризм И.М. Гельфанда: «Математика – это марафон». Колмогоров, по мнению коллег, был не только «марафонцем», но и «спринтером», в считаные дни с потрясающей скоростью даже в 80 лет решавший проблемы, с которыми другие ученые бились годами.

Первую работу, снискавшую мировую известность, о «ряде Фурье, расходящемся почти всюду», Колмогоров создал в 19 лет, а к 22 годам был уже автором полутора десятков печатных трудов по теории функции действительного переменного.

Еще на четвертом курсе МГУ математик занялся теорией вероятностей – разделом математики, изучающим закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Начал Андрей с закона больших чисел, представляющего собою «общий принцип, в силу которого совокупное действие большого числа случайных факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая». Над законом в свое время бились лучшие математики мира – Г. Больцман, Р. Мизес, А. Ломницкий и др. Все их попытки получить наиболее общие условия применимости этого закона к последовательности случайных величин оказались тщетными. Пальму первенства они и их последователи отдали аспиранту МГУ Колмогорову, который очень удачно использовал хорошо развитые (в том числе и им самим) методы теории функций действительного переменного. Это случилось в 1926 г. В 1930 г. увидело свет еще одно центральное исследование математика – «Об аналитических методах теории вероятностей».

В книге «Основные понятия теории вероятностей» Андрей Николаевич сформулировал в законченном виде аксиоматику (схему логического обоснования) теории: концепцию вероятности, всевозможные ее интерпретации, сферы применимости и т. д. Прекрасное знание многих областей математики – теории множеств, теории интеграла, теории функций и др. – позволило ученому сформулировать простую систему аксиом, давшую этой науке строгий вид нового раздела математики. Аксиоматику Колмогорова, применимую в самых разнообразных областях естественных, технических и гуманитарных наук, называют еще «моделью Колмогорова».

9
{"b":"186847","o":1}