Потребовалось еще полвека для того, чтобы идеи Лобачевского вошли в математическую науку и определили весь стиль математического мышления современной эпохи.
Ученые не раз отмечали, что Лобачевский своею геометрией совершил прорыв в методологии математики, указал принципиальную «возможность построения многих непротиворечивых геометрий, которые истинны с математической точки зрения». Добавим – не только геометрий, но и действительных миров. Тем самым ученый еще прочнее объединил в союз не только физику и математику, но и математику и философию.
Неэвклидову геометрию Лобачевского дополнил великий немецкий математик Г.Ф.Б. Риман. Многие ученые Казанского университета были в первых рядах популяризаторов неэвклидовой геометрии.
Большую роль в признании трудов Лобачевского сыграли исследования Э. Бельтрами (1868), Ф. Клейна (1871), А. Пуанкаре (1883) и др. А. Эйнштейн о Лобачевском не без зависти сказал: «Он бросил вызов аксиоме».
Геометрия Лобачевского нашла применение в теории функций комплексного переменного, в теории чисел, в специальной (частной) и общей теории относительности. Ныне формулы геометрии Лобачевского применяются в расчетах для ускорителей элементарных частиц. Всего и не перечесть. Ведь идеи Лобачевского весомо повлияли даже на развитие русского авангарда – творчество В. Хлебникова, К. Малевича и др.
ТЕОРИЯ МЕХАНИЗМОВ ЧЕБЫШЁВА
Математик, механик, педагог; доктор математики и астрономии; основатель и глава Петербургской математической школы, породившей, в свою очередь, русские математические школы – в теории вероятностей, теории чисел, теории приближения функций, теории механизмов; профессор Петербургского университета, академик Петербургской АН, почетный член всех российских университетов, член 25 академий и научных обществ мира; член Ученого комитета Министерства просвещения, рецензент учебников, составитель программы и инструкций для начальных и средних школ; кавалер Командорского креста Почетного легиона, лауреат Демидовской премии Петербургской АН; действительный тайный советник, Пафнутий Львович Чебышёв (1821–1894) является автором классических работ в механике, геометрии, баллистике, теории механизмов. Бесценен вклад ученого в интегральное исчисление, теорию вероятностей, теорию чисел. Чебышёв – основоположник теории приближения функций.
Пафнутия Львовича Чебышёва виднейшие ученые мира называли «гордостью науки в России, одним из величайших геометров всех времен», «гениальным математиком и одним из величайших аналистов всех времен» (Ш. Эрмит, М.Г. Миттаг-Леффлер). Прямо говорили, что «для получения новых результатов в вопросе распределения простых чисел требуется ум настолько превосходящий ум Чебышёва, насколько ум Чебышёва превосходит ум обыкновенного человека» (Д.Д. Сильвестр). Русские ученые в один голос заявляли, что Чебышёв является «украшением нашей Академии», а все его труды «носят отпечаток гениальности».
П.Л. Чебышёв. Неизвестный художник
Что характерно, среди панегиристов были и чистые математики-аналисты, и математики-прикладники, и геометры, и техники. Практически во всех областях механики и математики Чебышёв получил фундаментальные результаты, выдвинул столько новых идей и методов и так далеко определил развитие этих ветвей науки, что они и по сей день сохранили свое значение.
Три главных направления научной деятельности Чебышёва: теория чисел, теория вероятностей и теория механизмов – равновелики – и сами по себе, и своим влиянием на развитие науки «в мировом масштабе». В каждом из них математик «изобрел новые методы для решения трудных вопросов, которые были поставлены давно и оставались нерешенными. Вместе с тем он поставил ряд новых вопросов, над разработкой которых трудился до конца своих дней» (академики А.А. Марков, И.Я. Сонин).
Выберем посему область, что поближе к нашей повседневной практике, – теорию механизмов, но не забудем указать и самые значительные труды ученого из других сфер науки. Это – докторская диссертация Пафнутия Львовича «Теория сравнений» (1849), полвека служившая учебником для высшей школы; две статьи «Об определении числа простых чисел, не превосходящих данной величины» и «О простых числах» (1850), ставшие началом его теории чисел; работа «О средних величинах» (1867), легшая в основу теории вероятностей; трактаты «О функциях, наименее уклоняющихся от нуля» (1857), «Теория наилучшего приближения функции многочленами», явившиеся основанием теории приближений.
Сорок лет Чебышёв сотрудничал с военным артиллерийским ведомством, для которого выполнил ряд блестящих работ по усовершенствованию дальнобойности и точности артиллерийской стрельбы.
В исследовании «О черчении географических карт» (1856) Чебышёв поставил базовую задачу картографии (и начал решать ее) – найти картографическую проекцию любой страны, сохраняющую подобие в ее отдельных частях, с минимальным искажением масштаба. (Для Европейской России погрешность задавалась менее 2 % при реально достижимой тогда более 5 %.) Эта задача была решена позднее учеником Чебышёва профессором Д.А. Граве.
Всех исследований, статей и сообщений Чебышёва, в которых он самыми элементарными (с точки зрения царицы наук) средствами получил великолепные научные результаты, не перечислишь, так как, по подсчетам библиографов, этот список занимает несколько журнальных страниц. Одних только названий классических математических соотношений, связанных с именем математика, не один десяток: многочлены Чебышёва, неравенства, множество, система функций, фильтр, механизм, функции Ψ и Θ, сеть, формула, полиномы и т. д.
Нельзя не упомянуть и о предложении Чебышёва Петербургской АН – избрать членом-корреспондентом С.В. Ковалевскую, а также о его учениках – А.М. Ляпунове, А.А. Маркове, В.А. Стеклове, Д.А. Граве, Г.Ф. Вороном, А.Н. Коркине, Е.И. Золотареве. Будущие академики и главы других математических школ завершили проработки и идеи учителя – по теории фигур равновесия вращающейся жидкости, по теории цепей и т. д.
Пафнутий Львович любые теоретические проблемы математики старался увязать с практической деятельностью людей. Не раз подчеркивая, что в любом деле надо по возможности добиваться как можно большей выгоды, Чебышёв свои математические открытия совершил при решении прикладных задач. Более того, теории механизмов и машин ученый отдал едва ли не треть своей жизни. Глубокие теоретические изыскания в этой области математик успешно сочетал с конструированием конкретных механизмов. Ряд теоретических работ Чебышёва: «Об одном механизме», «О зубчатых колесах», «О центробежном уравнителе», «О кройке платьев» и т. п. – были воплощены в конкретные машины и устройства. Помимо этих сугубо практических вопросов Чебышёв вывел несколько сложнейших соотношений: структурную формулу плоских механизмов – т. н. формулу Грюблера (немецкий ученый, «открывший» ее на 14 лет позднее Чебышёва), теорему о существовании трехшарнирных четырехзвенников, описывающих одну и ту же шатунную кривую, нашедшую широкое применение на практике, и т. д.
Многочисленные работы Чебышёв посвятил синтезу шарнирных механизмов, в частности параллелограмму Уатта, изучение которого натолкнуло математика на постановку задачи о наилучшем приближении функций. Решив эту задачу, Чебышёв создал механизмы, в которых криволинейное движение свел к недостижимому ранее – прямолинейному (в некотором приближении), что вывело конструирование шарниров на принципиально новый уровень, а сами шарниры сделало значительно долговечнее. Ученый построил также немало механизмов, одним своим названием говорящих об их неординарности: парадоксальный механизм, механизмы с остановками, «выпрямители движения» и т. д. Всего ученый создал 41 оригинальный механизм и 40 их модификаций. Многие из них применяются ныне в современном автомато– и приборостроении.