un lado. Por esto nos encogemos. Por esto se produce una dilatación temporal.
Al viajar a una velocidad próxima a la de la luz uno apenas envejece, pero los amigos y los parientes que se han quedado en casa siguen envejeciendo a su ritmo normal. ¡Qué diferencia pues entre una persona que vuelve de un viaje relativista y sus amigos, que han envejecido décadas, por ejemplo, mientras él apenas ha envejecido! Un viaje a velocidad próxima a la de la luz es una especie de elixir de la vida. Puesto que el tiempo va más lento a una velocidad cercana a la de la luz, la relatividad especial nos proporciona un medio para alcanzar las estrellas. ¿Pero es posible desde el punto de vista de la ingeniería práctica viajar a una velocidad próxima a la de la luz? ¿Es realizable una nave estelar?
La Toscanano fue solamente la caldera donde se cocieron algunas de las ideas del joven Albert Einstein; fue también la patria de otro gran genio que vivió 400 años antes, Leonardo da Vinci, a quien le encantaba encaramarse a las colinas toscanas y contemplar la tierra desde gran altura, como si estuviera planeando como un pájaro. Fue él quien dibujó las primeras perspectivas aéreas de paisajes, ciudades y fortificaciones. Leonardo, entre sus muchos intereses y realizaciones pintura, escultura, anatomía, geología, historia natural, ingeniería militar y civil tenía una gran pasión: idear y fabricar una máquina que pudiese volar. Trazó dibujos, construyó modelos, fabricó prototipos de tamaño natural, pero ninguno de ellos funcionó. No existía en aquel entonces un motor suficientemente potente y ligero. Sin embargo, los diseños eran brillantes y animaron a los ingenieros de futuros tiempos. El mismo Leonardo quedó muy desanimado por estos fracasos. Pero no era culpa suya, porque estaba atrapado en el siglo quince.
Sucedió un caso semejante en 1939 cuando un grupo de ingenieros que había tomado el nombre de Sociedad Interplanetaria Británica diseñó una nave para trasladar personas a la Luna, utilizando la tecnología de 1939. La nave no era en absoluto idéntica al diseño de la nave espacial Apolo que llevó a cabo exactamente esta misión tres décadas después, pero sugería que algún día una misión a la Luna podía ser una posibilidad práctica de ingeniería.
Hoy en día disponemos de diseños preliminares de naves capaces de llevar personas a las estrellas. No está previsto que ninguna de estas naves parta directamente de la Tierra. Se trata de construirlas en una órbita terrestre, a partir de la cual zarparán hacia sus largos viajes interestelares. Uno de ellos recibió el nombre de Proyecto Orión, el de la constelación, recordando así que el objetivo último de la nave son las estrellas. Orión se movía impulsado por explosiones de bombas de hidrógeno, armas nucleares, contra una placa de inercia, proporcionando cada explosión una especie de puf puf, como si fuera una enorme canoa nuclear en el espacio. Orión parece totalmente práctico desde el punto de vista de su ingeniería. Por su misma naturaleza produciría grandes cantidades de deshechos radiactivos, pero si se calculaba bien la misión esto sólo sucedería en las soledades del espacio interplanetario o interestelar. Orión se estuvo desarrollando seriamente en los Estados Unidos hasta la fírma del tratado internacional que prohibe hacer estallar armas nucleares en el espacio. Creo que fue una gran lástima. La nave espacial Orión es el mejor destino que puedo imaginar para las armas nucleares.
El proyecto Daedalus es un diseño reciente de la Sociedad Interplanetaria Británica. Para construirlo hay que disponer de un reactor nuclear de fusión: algo mucho más seguro y eficiente que las actuales centrales nucleares. Todavía no tenemos reactores de fusión, pero se confía en tenerlos en las próximas décadas. Orión y Daedalus podrían desplazarse a un diez por ciento de la velocidad de la luz. Un viaje a Alpha Centauri, a 4,3 años luz de distancia, precisaría de cuarenta y tres años, un plazo inferior a una vida humana. Estas naves no podrían ir a una velocidad suficientemente próxima a la de la luz para que se notara la dilatación temporal de la relatividad especial. Aunque hagamos proyecciones optimistas sobre el desarrollo de nuestra tecnología, no parece probable que Orión, Daedalus y otras naves de su ralea puedan construirse antes de la mitad del siglo veintiuno, aunque si lo deseáramos Orión se podría construir ahora.
Hay que encontrar algo distinto para poder emprender viajes más allá de las estrellas más próximas. Quizás Orión y Daedalus podrían servir de naves multigeneracionales, de modo que sólo llegarían a un planeta de otra estrella los descendientes remotos de los que partieron unos siglos antes. 0 quizás se descubra un sistema seguro de hibernar personas que permita congelar a los viajeros del espacio y despertarlos siglos después. Estas naves estelares no relativistas, por enormemente caras que sean, parecen en cambio de diseño, construcción y uso relativamente fácil en comparación con naves estelares que se desplacen a velocidades cercanas a las de la luz. Hay otros sistemas estelares accesibles a la especie humana, pero sólo después de grandes esfuerzos.
El vuelo espacial interestelar rápido con la velocidad de la nave aproximándose a la de la luz no es un objetivo para dentro de un siglo sino para dentro de mil o diez mil años. Pero en principio es posible. R. W. Bussard ha propuesto una especie de nave interestelar a reacción que va recogiendo la materia difusa, principalmente átomos de hidrógeno, que están flotando entre las estrellas, la acelera en un motor de fusión y la expulsa por detrás. El hidrógeno serviría tanto de combustible como de masa de reacción. Pero en el espacio profundo sólo hay un átomo en cada diez centímetros cúbicos aproximadamente, es decir en un volumen del tamaño de un racimo de uvas. Para que el reactor funcione se necesita un área frontal de recogida de centenares de kilómetros de diámetro. Cuando la nave alcanza velocidades relativistas, los átomos de hidrógeno se desplazarán en relación a la nave a una velocidad cercana a la de la luz. Si no se toman precauciones, adecuadas, la nave y sus pasajeros se freirán por la acción de estos rayos cósmicos inducidos. Una solución propuesta se basa en privar con un láser a los átomos interestelares de sus electrones y de este modo dejarlos eléctricamente cargados mientras están todavía a una cierta distancia; un campo magnético muy potente desviaría entonces a los átomos cargados hacia la pantalla de recogida y lejos del resto de la nave. El esfuerzo de ingeniería que esto supone es de una escala sin precedentes hasta ahora en la Tierra. Estamos hablando de motores del tamaño de pequeños mundos.
Pero dediquemos un momento a pensar en esta nave. La Tierra nos atrae gravitatoriamente con una cierta fuerza, que si estamos cayendo experimentamos en forma de aceleración. Si caemos de un árbol cosa que debió sucederles a muchos de nuestros antepasados protohumanos bajaremos a plomo cada vez más de prisa y nuestra velocidad de caída aumentará en diez metros por segundo cada segundo. Esta aceleración que caracteriza a la fuerza de la gravedad que nos mantiene sobre la superficie de la Tierra, se llama 1 g, donde g es la gravedad de la Tierra. Con aceleraciones de 1 g nos sentimos a gusto; hemos crecido con 1 g. Si viviéramos en una nave interestelar que pudiese acelerar a 1 g, nos encontraríamos en un ambiente perfectamente natural. De hecho uno de los rasgos más importantes de la teoría general de la relatividad, teoría posterior debida a Einstein, es la equivalencia entre las fuerzas gravitatorias y las fuerzas que sentiríamos en una nave espacial en aceleración. Después de un año de estar en el espacio con una aceleración continua de 1 g tendríamos una velocidad próxima a la de la luz: (O,Ol km/seg2) x (3 x lo7seg)