La luz era un tema de la época: la ilustración simbólica de la libertad de pensamiento y de religión, de los descubrimientos geográficos; la luz que impregnaba las pinturas de la época, especialmente el exquisito trabajo de Vermeer; y la luz como objeto de investigación científica, como el estudio de la refracción por Snell, el invento del microscopio por Leeuwenhoek y la teoría ondulatorio de la luz del propio Huygens.6 Eran actividades relacionadas, y sus practicantes se trataban libremente. Es significativo que los interiores de Vermeer están cargados de artefactos náuticos y mapas murales. Los microscopios eran curiosidades de salón. Leeuwenhoek fue el albacea testamentario de Vermeer, y un visitante frecuente de la mansión de Huygens en Hofwijck.
El microscopio de Leeuwenhoek se desarrolló a partir de la lupa utilizada por los lenceros para examinar la calidad de la tela. Con él se descubrió un universo en una gota de agua: los microbios, a los que llamó animálculos y que calificó de lindos. Huygens había construido el diseño del primer microscopio y él mismo realizó muchos descubrimientos con él. Leeuwenhoek y Huygens fueron de las primeras personas que vieron células de esperma humano, un requisito previo para comprender la reproducción humana. Huygens, para explicar el lento desarrollo de micro organismos en agua previamente esterilizada por ebullición, propuso que eran tan pequeños que podían flotar por el aire y reproducirse al posarse en el agua. De este modo ofreció una alternativa a la generación espontánea: la teoría según la cual la vida puede surgir en el zumo de uva fermentado o en carne en descomposición, con total independencia de la vida preexistente. La especulación de Huygens no demostró ser correcta hasta la época de Louis Pasteur, dos siglos después. La búsqueda de vida en Marte por el Viking deriva en más de una línea de Leeuwenhoek y de Huygens. También son los abuelos de la teoría del germen en la enfermedad, y por lo tanto de parte de la medicina moderna. Pero ellos no buscaban resultados prácticos. Ellos se limitaban a manipular un poco dentro de la sociedad tecnológica.
El microscopio y el telescopio, desarrollados ambos en Holanda, a principios del siglo diecisiete, representan una ampliación de las perspectivas humanas hacia los reinos de lo muy pequeño y de lo muy grande. Nuestras observaciones de los átomos y de las galaxias comenzaron en esa época y en ese lugar. Christiaan Huygens disfrutaba desbastando y puliendo las lentes de telescopios astronómicos, y construyó uno de cinco metros de longitud. Sus descubrimientos con el telescopio bastarían para asegurarle un lugar en la historia de los logros humanos. Fue la primera persona que, siguiendo las huellas de Eratóstenes, midió el tamaño de otro planeta. Fue también el primero en conjeturar que Venus está cubierto totalmente de nubes; el primero en dibujar un accidente de la superficie de Marte (una gran ladera oscura azotada por el viento llamada Syrtis Major); y fue el primero que, al observar la aparición y desaparición de tales rasgos mientras el planeta giraba, determinó que el día marciano tenía, como el nuestro, una duración de unas veinticuatro horas. Fue el primero en reconocer que Saturno está rodeado por un sistema de anillos que no tocan en ningún punto al planeta. 7 Y fue el descubridor de Titán, la mayor luna de Saturno y, como sabemos ahora, la luna mayor del sistema solar; un mundo de extraordinario interés y porvenir. Realizó la mayoría de estos descubrimientos antes de los treinta años. También pensaba que la astrología era una tontería.
Huygens hizo mucho más. Un problema clave para la navegación marítima en aquella época era la determinación de la longitud. La latitud se podía determinar fácilmente por las estrellas; cuanto más al sur se estaba, más constelaciones meridionales se podían ver. Pero la longitud necesitaba de un cronómetro preciso. Un exacto reloj a bordo marcaría el tiempo del puerto de partida; la salida y puesta de Sol y de las estrellas determinaría el tiempo local de a bordo; y la diferencia entre los dos tiempos daría la longitud. Huygens inventó el reloj de péndulo (su principio fue descubierto con anterioridad por Galileo), que se utilizó, aunque no con éxito absoluto, para calcular la posición en medio del gran océano. Sus esfuerzos introdujeron una exactitud sin precedentes en las observaciones astronómicas y científicas en general, y estimularon adelantos posteriores en los relojes náuticos. Inventó el resorte espiral de balancín utilizado aún hoy en algunos relojes; realizó contribuciones fundamentales a la mecánica por ejemplo, el cálculo de la fuerza centrífuga. Y a la teoría de la probabilidad, basándose en un estudio del juego de los dados. Perfeccionó la bomba de aire, que revolucionó después la industria minera, y la linterna mágica, el antecesor del proyector de díapositivas.
También inventó un llamado motor de pólvora, que influyó en el desarrollo de otra máquina, el motor de vapor.
A Huygens le encantaba que la visión copernicana de la Tierra como planeta en movimiento alrededor del Sol fuese ampliamente compartida por la gente común de Holanda. De hecho, decía, Copémico era aceptado por todos los astrónomos excepto por los que eran algo torpes o estaban sometidos a las supersticiones impuestas por autoridades meramente humanas. En la Edad Media, los filósofos cristianos solían decir con gusto que los cielos difícilmente podían ser infinitos puesto que daban una vuelta a la tierra cada día, por lo tanto un número infinito de mundos, o incluso un gran número de ellos (o incluso otro mundo más), era algo imposible. El descubrimiento de que la Tierra gira en lugar de moverse el cielo tiene ¡aplicaciones importantes para la unicidad de la Tierra y la posibilidad de vida en otros lugares. Copémico mantenía que no sólo el sistema solar, sino el universo entero era heliocéntrico, y Kepler negaba que las estrellas tuvieran sistemas planetarios. La primera persona que atinó explícitamente la idea de un gran número de hecho un número infinito de otros mundos en órbita alrededor de otros soles, parece haber sido Giordano Bruno. Pero otros pensaron que la pluralidad de mundos se seguía inmediatamente de las ideas de Copérnico y de Keples y quedaron horrorizados. A principios del siglo diecisiete, Robert Merton dijo que la hipótesis heliocéntrica 'implicaba una multitud de otros sistemas planetarios, y que éste era un argumento de los llamados de reducción al absurdo (apéndice l), que demostraba el error de una suposición inicial. Su argumento, que en cierto modo pudo haber parecido mordaz, acaba así:
Si el firmamento es de tan incomparable magnitud, como le atribuyen esos gigantes cooperaciones… tan vasto y lleno de innumerables estrellas, hasta ser de una extensión infinita… ¿no podemos suponer también que… esas estrellas infinitas visibles en el firmamento son otros tantos soles, con sus correspondientes centros fijos, y que tienen asimismo sus correspondientes planetas subordinados, como tiene el Sol los suyos danzando tranquilos a su alrededor?… Hay por lo tanto infinitos mundos habitados; ¿qué lo impide?… a estos y otros intentos parecidos, osados e insolentes, a estas paradojas prodigiosas deben seguir las correspondientes inferencias, si se acepta lo que… Kepler y otros afirman del movimiento de la Tierra.
Pero la Tierra se mueve. Merton, si hoy viviese, estaría obligado a deducir mundos infinitos, habitables. Huygens no se acobardó por esa conclusión, él la aceptó alegremente: a través del mar del espacio, las estrellas son otros soles. Huygens razonó por analogía con nuestro sistema solar que aquellas estrellas tendrían sus propios sistemas planetarios, y que muchos de esos planetas podían estar habitados: Si sólo concediésemos a los planetas vastos desiertos… y les privásemos de todas aquellas criaturas que pregonan del modo más claro su arquitectura divina, los pondríamos debajo de la Tierra en belleza y dignidad, lo cual es muy poco razonable. 8