Литмир - Электронная Библиотека

В связи с тем, что космический летательный аппарат в различные моменты времени заходит в тень планеты, то для непрерывного обеспечения электроэнергией его аппаратуры на борту устанавливается аккумуляторная батарея, допускающая большое количество включений и выключений. С помощью специальной релейной механической контактной аппаратуры и соответствующей автоматики обеспечивается нормальная работа аккумуляторной батареи при зарядке и разрядке.

Мы здесь рассмотрели наиболее распространенные источники электроэнергии — солнечные батареи и соответственно аккумуляторные батареи на постоянном токе, обеспечивающие непрерывную работу всей аппаратуры спутника. Однако большинство бортовых приборов работает на переменном токе различных частот (50, 200, 400 и 1000 Гц и более). На первом этапе развития космической техники для создания источников переменного тока при наличии аккумуляторов постоянного тока использовались электромеханические машинные преобразователи, преобразующие постоянный ток в переменный. Это были двух- или трехмашинные мини-агрегаты с соответствующим регулятором частоты и напряжения, имеющим весьма важное значение для точной работы асинхронных и синхронных гистерезисных электродвигателей-гироскопов. В настоящее время машинные преобразователи заменены статическими силовыми полупроводниковыми преобразователями. Для обеспечения точной частоты в этих приборах применяется кварцевый стабилизатор частоты. Применение солнечных батарей как основных источников энергии на космических аппаратах с использованием лазерной техники, техники высоких напряжений и радиотехники создает предпосылки для дальнейшего развития статических преобразователей различных типов.

ЭЛЕКТРОМЕХАНИКА КОСМИЧЕСКИХ СТАЦИОНАРНЫХ АППАРАТОВ

Электромеханика самоходного аппарата «Луноход». Современный уровень развития космической техники позволил осуществить вывод на окололунную орбиту космического аппарата с посадочным блоком для спуска на поверхность Луны. С помощью такого посадочного блока на поверхность Луны были, в частности, доставлены «Луноходы».

Прообразом «Лунохода» является электротрактор на колесном ходу, который имеет соответствующие аккумуляторные батареи и электрический привод, соединенный с ходовой частью и снабженный аппаратурой регулирования. Особенность «Лунохода» заключается в том, что на нем установлены несколько двигателей, встроенных в механизмы движения колес. Регулирование этих двигателей и изменение направления их вращения обеспечиваются соответствующим автоматом в зависимости от заданной программы или с помощью радиокоманд, поступающих с Земли. «Луноход» снабжен соответствующей фототелевизионной системой и электромеханическими приборами ориентации и управления, позволяющими через свои радиоприемные устройства получать из центра управления соответствующие радиокоманды, осуществлять движение и маневры.

Электромеханика автоматической межпланетной станции «Викинг». Американская межпланетная станция «Викинг» состоит из двух блоков: орбитального и посадочного. Орбитальный блок предназначен для вывода научной аппаратуры на орбиту искусственного спутника Марса и снабжен соответствующими радиотехническими системами и антеннами, обеспечивающими, в частности, связь посадочного блока с наземными приемными станциями.

Электромеханика в космосе - img_17.png

Рис. 17. Инфракрасный радиометр станции «Викинг»

Электромеханические системы орбитального блока не отличаются существенно от применяемых в типовых искусственных спутниках Земли. Однако для большей надежности в них введено двухкратное резервирование наиболее важных бортовых систем: ориентации, стабилизации, измерительных датчиков, электрогироскопов и управляемых электромеханизмов. Система энергопитания состоит из солнечных батарей с автоматической электромеханической системой ориентации на Солнце и из соответствующих химических батарей.

Наибольший интерес представляет электромеханический инфракрасный радиометр (рис. 17) для фотографирования и измерения температуры на поверхности Марса. Принцип его конструкции заключается в следующем. Зеркальный искатель 2 перемещается в пространстве вдоль главной оптической оси О — О. В зависимости от модификации ИК-радиометр имеет электромеханизм либо линейных, либо вращательных перемещений. Пространственное перемещение вокруг оси измеряется прецизионным датчиком с точностью в пределах нескольких угловых минут. Этот датчик регистрирует пространственное положение зеркала-искателя и с помощью электронного устройства регулирует линейные или вращательные движения элементов электродвигателя 6.

Излучение, поступающее через вход радиометра 1, после отражения от зеркала-искателя 2 попадает на оптическую систему с двойным отражением 3–4 и далее через световоды и светофильтры — на чувствительный приемник или электронный фотоумножитель 5. Электронный усилительный блок усиливает полученные видеосигналы и передает изображения через канал радиосвязи на наземные станции приема. Таким образом, телевизионные изображения в форме видеосигналов при движении орбитального блока по траектории вокруг Марса определяются механическим движением сканирующего зеркала-искателя. Чтобы получить такое же изображение на фоточувствительной пленке, необходимо иметь на приемном пункте синхронное и синфазное электромеханическое оптическое устройство, физические принципы которого были описаны в разделе о функциональных системах.

Если для искусственных спутников Земли, в том числе для геостационарных, движущихся в околоземном пространстве на расстоянии до 36 тыс. км от Земли, проблема передачи видеосигналов с использованием синхронных и синфазных электрических машин является относительно простой задачей, то передача изображения с планет, отстоящих от Земли на расстоянии нескольких сотен миллионов километров, чрезвычайно сложна технически. Эта проблема, в частности, требует точных приборов измерения времени и радиотехнических средств для синхронизации импульсов, обеспечивающих синхронное и синфазное движение электродвигателей при возможных электромагнитных помехах в. радиотракте на дальних расстояниях.

Посадочный блок межпланетной станции «Викинг» конструктивно выполнен (рис. 18) в виде шестигранной платформы, на которой размещены основные системы и устройства. Система энергопитания состоит из двух радиоизотопных термоэлектрогенераторов 1, осуществляющих прямое преобразование тепловой энергии в электрическую с помощью полупроводниковых элементов, охлаждаемых специальным образом. В систему входят также аккумуляторные батареи, подключаемые в момент потребления максимальной мощности. Грунтозаборное устройство 2 посадочной станции предназначено для сбора образцов грунта с участков поверхности площадью в несколько десятков квадратных метров, а также для выполнения исследований и анализа микро- и макроструктуры грунта, в том числе биологического. Устройство смонтировано на телескопической штанге, с помощью которой оно может выдвигаться на несколько метров и поворачиваться как в вертикальной, так и в горизонтальной плоскостях.

Электромеханика в космосе - img_18.png

Рис. 18. Общий вид посадочного блока «Викинга»

Для поступательных и угловых перемещений устройства попользуются электрические двигатели постоянного тока: два — для поворотов, один — для поступательных перемещений телескопической штанги, еще один — для вращения грунтозаборного устройства.

В грунтозаборном устройстве применяются машины постоянного тока с щетками и коллекторами. Эти узлы герметизированы, чтобы щеточная пыль не попадала в отобранные для исследований порции грунта. Однако в рассматриваемом случае применение бесколлекторных и бесщеточных электродвигателей постоянного тока, по мнению автора, представляется более целесообразным.

Система автоматического управления грунтозаборного устройства обеспечивает подачу грунта в соответствующую камеру. На шестигранной платформе посадочного блока расположены также телевизионные камеры 3, радиотрансляционная антенна 4, остронаправленная антенна с электроприводом 5 и штанга 6 с метеорологическими приборами для исследований явлений в области метеорологии и сейсмологии.

11
{"b":"115877","o":1}