Литмир - Электронная Библиотека
Содержание  
A
A

Допустимые уровни высокочастотных звуков и ультразвуков следующие:

Охрана труда на производстве и в учебном процессе - i_005.png

Высокочастотный ультразвук практически не распространяется в воздухе и может оказывать воздействие на работников только при контакте источника ультразвука с поверхностью тела.

Низкочастотный ультразвук, напротив, оказывает на работающих общее действие через воздух и локальное за счет соприкосновения рук с обрабатываемыми деталями, в которых возбуждены ультразвуковые колебания. Эффекты, вызываемые ультразвуком, можно условно подразделить на механические – микромассаж тканей, физико-химические – ускорение процессов диффузии через биологические мембраны и изменение скорости биологических реакций, термические, а также эффекты, связанные с возникновением в тканях ультразвуковой кавитации (под воздействием только мощного ультразвука). Все это указывает на высокую биологическую активность данного физического фактора.

Условия труда работающих при различных процессах с применением высокочастотного ультразвука весьма разнообразны. Например, труд операторов ультразвуковой дефектоскопии сопровождается психоэмоциональной нагрузкой и утомлением зрительного анализатора, связанными с необходимостью расшифровки сигналов, перенапряжением опорно-двигательного аппарата, особенно кистей рук, что обусловлено вынужденной позой и характером совершаемых кистью движений, связанных с перемещением искателя по контролируемой поверхности.

В условиях производства ультразвук, распространяющийся контактным путем, может сочетаться с комплексом неблагоприятных факторов внешней среды: неудовлетворительными микроклиматическими условиями, запыленностью и загазованностью воздуха, высокими уровнями шума и др. В результате значительного поглощения в тканях неблагоприятные эффекты, развивающиеся под действием ультразвука при контактной передаче, обычно выражены в зоне контакта. Чаще всего это пальцы рук, кисти, хотя возможны и дистальные проявления за счет рефлекторных и нейрогуморальных связей.

Длительная работа с интенсивным ультразвуком при его контактной передаче на руки может вызывать поражение периферического нервного и сосудистого аппарата (вегетативные полиневриты, парезы пальцев). При этом степень выраженности изменений зависит от времени контакта с ультразвуком и может усиливаться под влиянием неблагоприятных сопутствующих факторов производственной среды.

Нормируемыми параметрами ультразвука, распространяющегося контактным путем, являются пиковое значение виброскорости (м/с) в полосе частот 8—31,5-103 кГц или его логарифмический уровень в децибелах (дБ).

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются следующие:

устранение причины шума или существенное его ослабление в самом источнике при разработке технологических процессов и проектировании оборудования;

изоляция источника шума от окружающей среды средствами звуко– и виброзащиты, звуко– и вибропоглощения;

уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий;

рациональная планировка помещений;

применение средств индивидуальной защиты от шума;

рационализация режима труда в условиях шума;

профилактические мероприятия медицинского характера.

Наиболее эффективный путь борьбы с шумом, причиной которого является вибрация от ударов, трения, механических усилий и т. д., – улучшение конструкции оборудования (изменение технологии с целью устранения удара). Снижение шума и вибрации достигается заменой возвратно-поступательного движения в узлах работающих механизмов равномерным вращательным.

При невозможности достаточно эффективного снижения шума за счет создания совершенной конструкции той или иной машины следует осуществлять его локализацию у места возникновения путем применения звукопоглощающих и звукоизолирующих конструкций и материалов. Воздушные шумы ослабляются установкой на машинах специальных кожухов или размещением генерирующего шум оборудования в помещениях с массивными стенами без щелей и отверстий. Для исключения резонансных явлений кожухи следует облицовывать материалами с большим внутренним трением.

Для снижения структурных шумов, распространяемых в твердых средах, применяются звуко– и виброизоляционные перекрытия. Ослабление шума достигается применением под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой вибрирующего оборудования на амортизаторы или специальные изолированные фундаменты. Вибрации, распространяющиеся по коммуникациям (трубопроводам, каналам), ослабляются стыковкой последних через звукопоглощающие материалы (прокладки из резины и пластмассы). Наряду со звукоизоляцией в производственных условиях широко применяются средства звукопоглощения. Для смещений малого объема (400–500 м3) рекомендуется общая облицовка стен и перекрытий, снижающая уровень шума на 7–8 дБ.

Уменьшение шума может быть достигнуто за счет рациональной планировки зданий: наиболее шумные помещения должны быть сконцентрированы в глубине территории в одном месте. Они должны быть удалены от помещений для умственного труда и ограждены зоной зеленых насаждений, частично поглощающих шум.

Помимо мер технологического и технического характера широко применяются средства индивидуальной защиты – антифоны, выполняемые в виде наушников или вкладышей. Существует несколько десятков вариантов заглушек-вкладышей, наушников и шлемов, рассчитанных на изоляцию слухового прохода от шумов различного спектрального состава.

Отрицательное действие шумов можно снизить за счет сокращения времени их воздействия, организации рационального режима труда и отдыха, предусматривающего кратковременные перерывы в течение рабочего дня для восстановления функции слуха в тихих помещениях.

2.6. Действие на человека теплоты и лучистой энергии. Запыленность и загазованность производственных помещений. Вентиляция и отопление

Тепловая и лучистая энергия

Внутренняя тепловая и лучистая энергия играют значительную роль в создании микроклиматических условий на рабочих местах и в помещениях.

Теплопередача может происходить путем конвекции, теплопроводности и излучения. Передача тепла осуществляется:

при конвекции – движущейся средой: водой, паром, газом и т. п.;

при теплопроводности – от одной части твердого тела к другим;

при излучении – интенсивными инфракрасными лучами, которые непосредственно не нагревают воздух, но при поглощении которых твердые тела нагреваются.

Чаще всего нагревание (охлаждение) тел происходит посредством всех трех или двух видов теплопередачи.

Для теплообмена при излучении не требуется непосредственного соприкосновения тел, и среда, через которую идут лучи, практически на них не воздействует. Действие тепла при этом сказывается не только на облучаемом участке тела, но и на всем организме. Излучение может вызвать у человека тепловые ожоги всех трех степеней.

Ожоги – очень опасный вид травм, так как они вызывают нарушения различных жизненных функций.

По характеру и интенсивности воздействия на организм человека энергию при излучении подразделяют на три категории:

I – энергия, исходящая от тел, нагретых до 500 °C, с преобладающим тепловым воздействием;

II – энергия, излучаемая телами, нагретыми до 3000 °C, с преобладающим световым воздействием;

III – энергия тел, нагретых более 3000 °C, в которой преобладают ультрафиолетовые лучи, вызывающие заболевание глаз и ожоги.

Для защиты человека от теплового излучения используют различного рода экраны, защитную спецодежду. Радикальное средство защиты – устранение источника излучений. Экраны изготавливают из материалов с высокой отражательной способностью (никелированные, хромированные, полированные, с зеркальными покрытиями) и устанавливают перпендикулярно направлению излучения.

26
{"b":"111874","o":1}