Вопрос об удельной значимости расстройств гемодинамики и необычных афферентных влияний в развитии нарушений деятельности организма при перегрузках различного направления продолжает оставаться еще недостаточно ясным и требует дальнейшего изучения. Полагают, что роль каждого из указанных механизмов может существенно изменяться в зависимости от характера воздействия, в частности длительности, величины, направления и повторности перегрузок.
• При кратковременном воздействии перегрузок даже больших величин основное значение в развитии нарушений деятельности организма имеют необычные афферентные влияния, поступление которых в центральную нервную систему может привести даже к развитию шокового состояния с присущим ему комплексом сдвигов, характерных для стрессовых реакций.
• При продолжительном воздействии перегрузок механизм нарушений в значительной мере определяется вектором перегрузки. При перегрузках направления голова – таз, относимых по величине к функционально переносимым, основное значение в развитии сдвигов функционального состояния центральной нервной системы и регуляции деятельности других систем организма имеют необычные афферентные влияния. Однако при повторном воздействии перегрузок и ослаблении механизмов компенсации все большее значение приобретают нарушения микроциркуляции, приводящие к развитию, вследствие гипоксии, изменений обменных процессов. При перегрузках направления таз – голова основное значение принадлежит явлениям циркуляторной гипоксии мозга, а также нарушениям нормальной деятельности функций организма, связанным с резким повышением внутричерепного давления и раздражением интероцепторов органов средостения.
При перегрузках направления грудь – спина на первое место в механизме нарушений выступают расстройства функции внешнего дыхания и гемодинамические нарушения в легких, приводящие к гипоксемии и гипоксии важнейших органов и тканей организма, что, в свою очередь, является причиной необычной афферентной импульсации, способствующей возникновению расстройств центральной регуляции. Основные звенья механизма влияния ускорений на функциональные системы организма показаны на рисунке 3.3.
Рис. 3.3. Схема основных механизмов действия ускорений на организм (по: Е. Ф. Котовский и др., 1972)
Рассматривая вопрос о пределах переносимости перегрузок человеком, следует различать биологическую и физиологическую переносимость. Границы биологической переносимости определяются сохранением жизни, но при этом возможны нарушения функций ряда органов и систем организма: границы физиологической переносимости определяются сохранением работоспособности человека и, как правило, отсутствием патологических сдвигов. Основные проявления действия перегрузок в последнем случае: «реакция напряжения» на гемодинамические расстройства, механическое затруднение дыхания, смещение и обратимая деформация внутренних органов.
Известно, что переносимость перегрузок определяется многими факторами, основные из них – величина и направление воздействия, продолжительность его, скорость нарастания перегрузок, а также функциональное состояние организма.
Обращает на себя внимание различная переносимость человеком перегрузок, имеющих разное направление и величину. Наименее устойчив человек к действию перегрузок каудо-краниального направления и, напротив, наиболее устойчив к перегрузкам, действующим по оси грудь – спина.
Вопрос об изыскании средств повышения устойчивости организма к длительно действующим ускорениям приобрел практическую значимость, когда дальнейшее повышение мощности моторов и маневренности самолетов стало лимитироваться пределами физиологической переносимости человеческого организма.
Развитие авиационной техники, и особенно космических полетов, требует не только сохранения высокой работоспособности, но и дальнейшего повышения порогов устойчивости к действию ускорений.
К решению этой проблемы привлечено внимание многих специалистов, и повышение устойчивости осуществляется по разным направлениям: физическими, физиологическими и комплексными методами.
1. Физические методы повышения устойчивости: противоперегрузочные компенсирующие костюмы; специальные кресла, позволяющие придавать оптимальную позу человеку по отношению к вектору ускорений; индивидуально профилированные ложементы; дыхание под повышенным давлением; иммерсионные системы различных типов.
Рассмотрим вышеперечисленные направления более подробно.
• Так, исходя из того что основным патогенетическим звеном при действии положительных перегрузок (голова – таз) является перемещение крови от головы и верхних отделов туловища в сосуды брюшной полости и нижние конечности, уже в 1943 году были предложены первые типы противоперегрузочной одежды, затрудняющие перераспределение крови под влиянием сил гравитации.
В настоящее время как у нас, так и за рубежом практически используется несколько вариантов противоперегрузочных костюмов. Принцип их действия во всех случаях общий: при увеличении перегрузок автоматически происходит повышение давления в резиновых камерах, обхватывающих область живота, бедер и голеней. Чем больше перегрузка, тем выше нагнетается давление в камерах костюма.
Артериальное давление в сонной и плечевой артериях, а также в мочке уха удерживается на более высоком уровне, улучшается приток крови к мозгу и сердцу, меньше изменений наблюдается со стороны зрения, биоэлектрической активности миокарда, условно-рефлекторной деятельности и энерготрат.
Таким образом, применение противоперегрузочных костюмов оказалось достаточно эффективным. Испытания показали, что использование этих костюмов повышает переносимость перегрузок на 0,8–1,3 единицы.
• Как указывалось выше, наибольшая переносимость перегрузок наблюдается при поперечном направлении их действия по отношению к вертикальной оси человеческого тела.
В результате проведения специальных исследований, направленных на изыскание наиболее оптимальной позы человека во время действия перегрузок, было установлено, что требуется строгое соблюдение соотношения углов наклона спинки кресла и подголовника по отношению к вектору перегрузки, а также бедер и голеней по отношению к туловищу. При этом наиболее существенно положение туловища и головы.
• Повышение переносимости организма при оптимальной позе человека по отношению к вектору ускорений может быть достигнуто посредством создания индивидуальных профилированных ложементов, обеспечивающих большую площадь противодавления действующим силам. Переносимость перегрузок в этих условиях повышается до 25 единиц.
• Одним из ведущих факторов в патогенезе нарушений при действии поперечно направленных перегрузок является расстройство функций внешнего дыхания и кровообращения, ведущее к гипоксемии и гипоксии. Это побудило исследователей испытать эффективность дыхания под повышенным давлением при перегрузках. При этом отмечалось значительное по времени (в 2 раза большее) повышение устойчивости, если испытуемые дышали чистым кислородом или газовой смесью под избыточным давлением. Этот эффект объясняют улучшением газообмена в легких, а следовательно, предотвращением развития кислородного голодания.
• Значительный интерес представляет теоретически и экспериментально разработанный К. Э. Циолковским и впервые практически примененный в Канаде Френксом метод повышения переносимости перегрузок при помощи иммерсионных систем.
Однако несмотря на высокую эффективность этого метода, его практическое использование на современных летательных аппаратах неосуществимо из-за большой сложности и громоздкости иммерсионных систем; кроме того, помещение пилота в контейнер с жидкостью ведет к резкому ограничению его возможности по наблюдению и управлению кораблем. Все это заставляет, не отказываясь от самого принципа разработки защиты от перегрузок при помощи гидросистем, изыскивать и другие методы решения этой сложной проблемы.