Литмир - Электронная Библиотека
A
A

Основные задачи программы исследований состояли в следующем:

– анализ спектрально-энергетических характеристик сигналов обратного рассеяния (СОР) и сигналов возвратно-наклонного зондирования (ВНЗ);

– изучение по измерениям СОР и ВНЗ структуры и динамики ИПО на разных высотах и при различных способах их создания;

– исследования взаимодействия ИПО с ионосферой;

– изучение особенностей взаимодействия мощного КВ-излучения с «сильными» плазменными неоднородностями;

– анализ эффективности диагностики и контроля методами КВ-зондирования искусственной модификации ионосферы.

В программе экспериментов осуществлялись комплексные исследования ИПО, которые проводились с использованием бортовых измерительных средств, обеспечивающих прямые измерения параметров ИПО, а также с привлечением наземных оптических и радиофизических измерительных комплексов. В экспериментах ИПО создавались с помощью пиротехнических генераторов и плазменных ускорителей стационарного и импульсного типа, которые устанавливались на метеорологических ракетах MP-12 и МР-20, запускавшихся с полигона Капустин Яр и с борта научно-исследовательского судна в Норвежском море.

В активных экспериментах, образование ИПО производилось на высотах 130-180 км. При применении пиротехнических генераторов создавались крупномасштабные ИПО — т.н. искусственные ионные облака — с размерами от сотен метров на начальной стадии до десятка километров на заключительной фазе их образования. При использовании стационарных плазменных ускорителей при инжекции плазмы с борта ракеты образовывалось протяженное ИПО вдоль траектории ракеты. В ряде экспериментов для изучения особенностей взаимодействия мощного КВ-радиоизлучения с ИПО на ракете устанавливалось радиоприемное устройство, которое регистрировало излучение станции. В этом случае предусматривалось непрерывное излучение станции на одной из частот.

Особенности характеристик СОР при зондировании искусственных облаков на расстоянии — 1100 км от РЛС в зоне прямой видимости иллюстрируются данными эксперимента с созданием с помощью пиротехнического генератора одного ионного облака, в котором было создано 5 облаков вдоль траектории ракеты. Как следует из этих данных, о возникновении ИПО свидетельствует значительное на 40-50 дб возрастание амплитуды сигнала СОР, причем увеличенные значения СОР регистрируются в течение более 30 минут. Верхнюю временную границу регистрации ИПО определить не удалось из-за преждевременного прекращения зондирования на станции. Амплитудные вариации СОР характеризуются регулярными периодическими замираниями на 10-20 дб, свидетельствующими об изменениях структуры ИПО. Распад облака на множество мелких неоднородностей и его расслоение, обычно хорошо наблюдаемое по данным оптических наблюдений при локации ИПО, на ЗГРЛС проявляется в возникновении квазишумового характера СОР. При образовании в эксперименте нескольких ионных облаков создание каждого облака сопровождается возрастанием амплитуды СОР. Затем происходит уменьшение СОР на ~ 20 дб и этот уровень сигнала поддерживается в течение нескольких десятков минут.

Данные по локации ИПО свидетельствуют также о значительном увеличении СОР при создании ИПО, но и несколько отличающемся характере их изменений по сравнению с экспериментами с искусственными облаками. Важная особенность рассматриваемого эксперимента состоит в том, что наблюдения СОР существенно меньше по времени и СОР исчезает через 10-100 секунд после прекращения инжекции.

Отмеченные особенности СОР регистрировались не только в области «прямой» видимости ИПО, но и на дальностях около 3000 км (Норвежское море) при создании ИПО на нисходящем участке первого скачка КВ-радиоволн. В этом случае амплитуда СОР на 20-30 дб ниже, чем при локации ИПО на полигоне Капустин Яр, однако общий характер изменения сигналов подобен.

Важная информация о взаимодействии ИПО с ионосферой содержится в доплеровских спектрах СОР и ВНЗ. В качестве примера динамики доплеровских спектров СОР получены спектры, зарегистрированные в эксперименте с инжекцией плазменной струи. Ряд характерных особенностей при регистрации доплеровских смещений СОР в этом же эксперименте также наблюдаются. Из приведенных данных можно сделать следующие заключения:

1. После инжекции плазмы в спектрах регистрируется значительное увеличение амплитуды сигнала.

2.При инжекции плазменной струи на высотах h·140 км наблюдаются значительные знакопеременные изменения доплеровской частоты, а также появление «плавающих» максимумов в доплеровских спектрах, указывающих на то, что отражение происходит от фронта плазменной струи, не заторможенной в ионосфере.

3.Вблизи апогея траектории ракеты, когда флуктуации доплеровского смещения сигнала составляют + 10 Гц, отражение радиоволн определяется в основном объемным рассеянием радиоволн на развитой неоднородной структуре ИПО, «вмороженного» в ионосферу.

Доплеровские спектры СОР, зарегистрированные при зондировании искусственных ионных облаков спустя 2-10 секунд после инжекции, характеризуются также значительным увеличением средней амплитуды сигнала и малыми смещениями доплеровской частоты в пределах -Ь 5 Гц. Это указывает на «вмороженность» облаков в ионосферную плазму и перенос их со скоростью дрейфа в ионосфере.

Особенности вариации сигнала локатора, измеряемого на борту ракеты при ее пролете через ИПО, видны, что при «взлете» ракеты в диаграмму направленности. Происходит возрастание сигнала РАС, сопровождаемое его модуляцией. При образовании ИПО регистрируется резкое общее увеличение и возникновение значительных колебаний амплитуды сигнала. Результаты моделирования отмеченного эффекта получены A.M. Насыровым и Н.А. Осиповым. Качественное согласие экспериментальных данных и модельных оценок указывает на сильную дифракцию КВ-радиоволн на ИПО и значительное рассеяние «вперед» радиоволн на неоднородностях ИПО.

Взаимодействие мощных КВ-радиоволн с ионосферой при наклонном зондировании ЗГРЛС приводит к ряду нелинейных эффектов и, в частности, к увеличению МПЧ. Возможным проявлением нелинейных процессов при воздействии мощного излучения ЗГРЛС на ИПО в экспериментах служило заметное увеличение времени существования ИПО, зарегистрированное различными КВ-средствами, по сравнению с теми случаями, когда ИПО не облучалось ЗГРЛС.

Обобщая основные результаты программы исследований ИПО в ионосфере с помощью ЗГРЛС, можно сделать следующие основные выводы:

1. При зондировании ИПО выявлены основные особенности структуры и динамики ИПО, образуемых ниже максимума F-слоя при различных способах их создания.

2. Экспериментальные и модельные оценки взаимодействия мощного КВ-радиоизлучения с ИПО показывают, что при формировании в результате развития неоднородностей происходит интенсивное объемное рассеяние КВ-радиоволн и дифракция радиоволн на неоднородном ИПО.

3. ЗГРЛС является эффективным средством диагностики и контроля искусственной модификации ионосферы на расстояниях до нескольких тысяч километров от пункта нахождения станции.

В заключении авторы отмечают тот интерес, с которым относился к проведенным работам Ф.А. Кузьминский. Его замечания и советы во многом способствовали развитию исследований в этой новой области использования загоризонтной радиолокации. Значительную помощь авторам при организации и проведении исследований, а также при анализе их результатов оказал СИ. Козлов. Исследования по указанной программе стали возможны благодаря совместным усилиям специалистов из различных организаций. Авторы считают своим приятным долгом особо отметить вклад В.А. Иванова, В.М. Ороса, О.М. Ярко, М.Б. Белоцерковского, Н.В. Ветчинкина, И.В. Грыцькива».

«Загоризонтная радиолокация в России и на Украине (История и достижения)».

А.А. Кузьмин, В.А. Якунин, Ф.Ф. Евстратов, Э.И. Шустов,

А.А. Колосов (НИИДАР, г. Москва, Россия), В.А. Алебастров

(УРТИ, г. Николаев, Украина), Ю.И. Абрамович

(ОПУ, г. Одесса, Украина)

62
{"b":"110246","o":1}