Литмир - Электронная Библиотека
Содержание  
A
A

  В зависимости от назначения и принципа действия ЭЛП могут иметь не одну, а несколько электронных пушек и отличаться от простейших значительной конструктивной сложностью при сохранении, однако, основного принципа — взаимодействия управляемых электронных потоков с мишенями.

  Лит.: Шерстнев Л, Г., Электронная оптика и электроннолучевые приборы, М., 1971; Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972; Денбновецкий С. В., Семенов Г. Ф., Запоминающие электроннолучевые трубки в устройствах обработки информации, М., 1973.

  В. Л. Герус.

Большая Советская Энциклопедия (ЭЛ) - i009-001-225816505.jpg

Рис. 2. Схематическое изображение светоклапанного электроннолучевого прибора: 1 - электронный луч; 2 - источник света с оптической системой; 3 - электронная пушка; 4 - отклоняющие катушки; 5 - мишень; 6 - объектив; 7 - проекционный экран.

Большая Советская Энциклопедия (ЭЛ) - i010-001-272753725.jpg

Рис. 1. Схема простейшего электроннолучевого прибора: 1 — электронный луч (пучок электронов); 2 — электронная пушка; 3 — отклоняющие пластины; 4 — мишень; 5 — вакуумплотная оболочка; К — катод (источник электронов); М — управляющий электрод (модулятор).

Электроннооптический преобразователь

Электронноопти'ческий преобразова'тель (ЭОП), вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого изображения. В основе действия ЭОП лежит преобразование оптического или рентгеновского изображения в электронное, осуществляемое с помощью фотокатода , и затем электронного изображения в световое (видимое), получаемое на катодолюминесцептном экране (см. Катодолюминесценция , Люминофоры ). В ЭОП (см. рис. ) изображение объекта проецируется (с помощью объектива) на фотокатод (при использовании рентгеновских лучей теневое изображение объекта проецируется на фотокатод непосредственно). Излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причём величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрическим полем на участке между фотокатодом и экраном, фокусируются с помощью электрического или (и) магнитного поля (образующего электронную линзу ) и бомбардируют экран, вызывая его люминесценцию . Интенсивность свечения отдельных точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта. Различают ЭОП одно- и многокамерные (каскадные); последние представляют собой такое последовательное соединение двух или более однокамерных ЭОП, при котором световой поток с экрана первого ЭОП (каскада) направляется на фотокатод второго и т. д.

  Основные характеристики ЭОП: 1) интегральная чувствительность (ИЧ) — отношение фототока к интенсивности падающего на фотокатод излучения; определяется главным образом свойствами используемого в ЭОП фотокатода; например, у ЭОП с кислородно-серебряно-цезиевым фотокатодом, применяемого для преобразования изображения в инфракрасных лучах (с длиной волн 0,78—1,5 мкм ), ИЧ достигает 70 мка/лм; многощелочной фотокатод (состоит из соединений Sb с Cs и Sb с К и Na), используемый в ЭОП для усиления яркости видимого изображения, обеспечивает ИЧ до 106мка/лм; 2) разрешающая способность, определяемая максимальным количеством раздельно видимых штрихов изображения на участке экрана длиной 1 мм; лежит в пределах 25—60 и более штрихов на 1 мм; 3) коэффициент преобразования — отношение излучаемого экраном светового потока к лучистому потоку, падающему от объекта на фотокатод; у однокамерных ЭОП составляет несколько тыс., у каскадных — 106 и более.

  Основные недостатки каскадных ЭОП — малая разрешающая способность и сравнительно высокий темновой фон, приводящие к ухудшению качества изображения. Последний недостаток устранён в ЭОП с микроканальным усилителем, предложенным в 1940 советским инженером И. Ф. Песьяцким. В ЭОП этого типа на пути фотоэлектронов располагается стеклянная пластина, пронизанная множеством каналов диаметром 15—25 мкм; внутренние стенки каналов покрыты материалом с высоким коэффициентом вторичной электронной эмиссии . К пластине прикладывают напряжение в несколько кв, под действием которого попавшие в каналы фотоэлектроны ускоряются до энергий, достаточных для возникновения вторичной электронной эмиссии из стенок каналов, что позволяет усилить первичный электронный поток в 105 106 раз. Электроны из каждого канала попадают в соответствующую точку экрана, формируя видимое изображение. В микроканальных ЭОП отпадает необходимость применения электронной фокусировки.

  Большой вклад в разработку ЭОП различных типов внесли советские учёные П. В. Тимофеев , В. В. Сорокина, М. М. Бутслов и др.

  И. Ф. Усольцев.

  ЭОП применяются в инфракрасной технике , спектроскопии , медицине, микробиологии, кинотехнике , ядерной физике и других областях науки и техники. В конце 40-х гг. с помощью инфракрасного ЭОП с длинноволновой границей чувствительности 1,1 мкм были сфотографированы спектр ночного неба и невидимая область центральной части нашей Галактики, что стимулировало широкое использование ЭОП в астрономии.

  Современные многокамерные ЭОП позволяют регистрировать на фотоэмульсии световые вспышки (сцинтилляции ) от одного электрона, испускаемого входным фото-катодом. Но наряду с этим при наблюдениях слабых (слабоизлучающих или слабоосвещённых) небесных объектов возможно накопление сигналов о таких вспышках в памяти ЭВМ. Существуют спектральные приборы, работающие на этом принципе, которые одновременно регистрируют около тысячи элементов спектра небесного светила и столько же элементов спектров сравнения; способность к накоплению информации практически ограничивается объёмом памяти ЭВМ. Такие приборы обеспечивают существенный выигрыш при наблюдении слабых объектов на фоне свечения ночного неба.

  Этот выигрыш пропорционален

Большая Советская Энциклопедия (ЭЛ) - i-images-192709513.png
, где h — квантовый выход приёмника (отношение числа фотоэлектронов к числу падающих квантов), t — время накопления. Посредством таких приборов может быть осуществлено суммирование изображений, получаемых с помощью нескольких телескопов.

  В некоторых типах ЭОП изображение регистрируется матрицей из электроночувствительных элементов (в количестве 10—100), установленной вместо люминесцентного экрана.

  П. В. Щеглов.

  Лит.: Зайдель И. Н., Куренков Г. И., Электронно-оптические преобразователи, М., 1970; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, 2 изд., М., 1974; Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973; Щеглов П. В., Электронная телескопия, М., 1963.

Большая Советская Энциклопедия (ЭЛ) - i010-001-285328736.jpg

Структурная схема электроннооптического преобразователя: А — объект наблюдения; О — объектив; Ф — фотокатод; ФЭ — фокусирующий электрод; Э — люминесцентный экран; К — стеклянный или керамический корпус; стрелками показан ход лучей вне (оптических) и внутри (электронных) прибора.

Электронносветовой индикатор

Электронносветово'й индика'тор, визуальный индикатор точной настройки лампового радиоприёмника на волну принимаемой радиостанции, установки уровня записи в ламповом магнитофоне, установки «нуля» в измерительной радиоаппаратуре; представляет собой комбинированную электронную лампу, в баллоне которой совмещены индикаторное устройство и усилительная лампа (обычно триод ). Индикаторное устройство содержит следующие элементы: люминесцентный низковольтный экран с люминофором , нанесённым либо на металлическую подложку, либо на прозрачную проводящую плёнку на стекле баллона Э. и.; электроды для формирования пучка электронов, испускаемых катодом (общим с усилительной лампой); отклоняющие (управляющие) электроды. Индицируемый сигнал после выпрямления подаётся на управляющую сетку усилительной лампы. От его величины зависит ток в анодной цепи, который, в свою очередь, определяет соотношения потенциалов анода, отклоняющих электродов (соединённых с анодом внутри баллона Э. и.) и экрана (соединённого с анодом через нагрузочный резистор сопротивлением 1—2 Мом ). Управляющие электроды так отклоняют электронный пучок, что, падая на экран, он высвечивает на нём две полосы, разделённые тёмным участком. Обычно режим работы Э. и. выбирают таким, что максимальному сигналу соответствует максимальное сближение светлых полос.

67
{"b":"106437","o":1}