Литмир - Электронная Библиотека
Содержание  
A
A

  В. Нернст (1889) придал термодинамическим соотношениям Э. удобную форму. Эдс Е может быть представлена в виде разности величин электродных потенциалов обоих электродов, каждый из которых выражает эдс цепи из данного электрода и некоторого электрода сравнения , например стандартного водородного электрода . Для простейшего случая металла в равновесии с разбавленным раствором, содержащим ионы этого металла в концентрации с,

 

Большая Советская Энциклопедия (ЭЛ) - i-images-197601548.png
(формула Нернста) (3)

  где R — газовая постоянная, E стандартный электродный потенциал данного электрода. В общем случае величина с должна быть заменена на активность иона. Общее условие равновесия определяется требованием постоянства электрохимического потенциала любой частицы во всех частях системы.

  Электрохимическая кинетика. В центре внимания современной Э. стоит электрохимическая кинетика, т. е. учение о механизме и законах протекания электрохимических реакций. В реальных условиях, например при электролизе, коррозии металлов, в химических источниках тока , в живых организмах, электрохимическое равновесие, как правило, не реализуется, и понимание электрохимических процессов требует знания кинетических закономерностей. Поскольку непременным участником процессов на границе металла (или полупроводника) и электролита является электрон, рассматриваемый в качестве простейшей устойчивой химической частицы, исследование природы электрохимического элементарного акта существенно для кинетики химической . Современная теория элементарного акта основывается на представлениях квантовой механики. Предпосылкой её развития явилось выдвинутое немецким учёным М. Фольмером и Т. Эрдеи-Грузом представление, согласно которому перенос заряда может определять измеряемую скорость электрохимического процесса в целом (теория замедленного разряда, 1930). А. Н. Фрумкин установил количественное соотношение между скоростью электрохимической реакции и строением двойного электрического слоя на границе металл/электролит (1933). Первое применение квантовой механики к Э. — заслуга Р. Гёрни (Великобритания, 1931). В 1935 М. Поляни (Венгрия) и Ю. Хориути (Япония) заложили основы теории переходного состояния, или активированного комплекса , развитой Г. Эйрингом (США). Согласно современной квантовой теории, любой перенос заряда, как на границе фаз, так и в объёме раствора, связан с изменением структуры полярного растворителя, переориентацией его диполей. Существенно различен характер изменения степеней свободы классических и квантовых систем. Частицам, прочно связанным с растворителем, таким, как электроны и протоны, присущ квантовый характер движения. Для них вероятны подбарьерные туннельные переходы. Квантовая теория позволила дать рациональное объяснение эмпирически установленной закономерности, связывающей скорость необратимого процесса, выраженную через плотность тока i, с электрохимическим перенапряжением h, или потенциалом электрода (уравнение немецкого учёного Ю. Тафеля, 1905), h = а + b lg i, где а и b — постоянные, lg — десятичный логарифм, и указала пределы её применимости. Энергетические характеристики переходного состояния, а следовательно и скорость процесса, зависят от природы металла, а также от присутствия посторонних адсорбированных частиц. Эти эффекты, которые могут приводить к значительному ускорению процесса, объединяются под названием электрокатализа . В случае электрохимических процессов, сопровождающихся образованием новой фазы, например при электроосаждении металлов, необходимо также учитывать вероятность возникновения зародышей и условия роста кристаллов.

  Электрохимическая кинетика учитывает также строение границы раздела фаз, особенно границы металл/электролит, на которой возникает электрическое поле благодаря пространственному разделению зарядов, т. н. двойной электрический слой (д. э. с.). Первый метод исследования д. э. с. был предложен Г. Липманом (см. Электрокапиллярные явления ). В дальнейшем теория д. э. с. развивалась Ж. Гуи (Франция, 1910), О. Штерном (Германия, 1924), Фрумкршым и американским учёным Д. Грэмом. Введение Фрумкиным (1927) представления о потенциале нулевого заряда позволило устранить противоречие между контактной и химической теорией эдс.

  Электрохимические процессы состоят из ряда стадий (см. Электродные процессы ). Длительное прохождение тока требует подачи реагирующего вещества из объёма раствора к поверхности электрода и отвода продуктов реакции, что достигается благодаря диффузии; необходимо также учитывать миграцию заряженных частиц под действием электрического поля. Подача вещества ускоряется при размешивании жидкости, т. е. при конвективной диффузии. Ток вызывает концентрационную поляризацию (см. Поляризация электрохимическая ). Помимо стадий переноса заряда и диффузионных стадий суммарный процесс может включать чисто химические и другие стадии, например возникновение зародышей и включение разрядившихся атомов в кристаллическую решётку, выделение пузырьков газа и т. д. Накопление промежуточных продуктов на поверхности электрода сверх их равновесной концентрации, как и замедленность процессов диффузии и стадий разряда, приводит к поляризации электрода и перенапряжению. Если при практически используемых плотностях тока перенапряжение пренебрежимо мало, то это свидетельствует об обратимости процесса, степень которой в целом тем выше, чем больше ток обмена между исходными веществами и конечными продуктами реакции при равновесном потенциале. Обратимость многостадийного процесса предполагает обратимость всех его стадий. Часто необратимость процесса определяется медленностью одной из стадий, которая и определяет скорость процесса в целом. Для выяснения механизма электрохимических процессов применяются разнообразные формы электрических измерений: определение зависимости потенциала от плотности постоянного тока, измерение полного электрического сопротивления, определение зависимости потенциала или тока от времени при различно запрограммированном изменении во времени второй переменной, а также нелинейные методы. Одновременно исследуются состояние поверхности электрода (с использованием оптических методов), пограничное натяжение и др.

  Электрохимическая кинетика лежит в основе современной теории коррозии металлов; в растворах электролитов коррозия является результатом одновременного протекания двух или более электрохимических процессов. Для развития электрохимической кинетики большое значение имело создание точных и удобных экспериментальных методов исследования механизма электродных процессов, в особенности полярографического метода, предложенного Я. Гейровским (см. Полярография ).

  Практическое значение Э. Электрохимические методы широко используются в различных отраслях промышленности. В химической промышленности это электролиз — важнейший метод производства хлора и щелочей, многочисленных окислителей, получение фтора и фторорганических соединений. Возрастающее значение приобретает электросинтез самых различных химических соединений. На электрохимических методах основано получение алюминия, магния, натрия, лития, бериллия, тантала, титана, цинка, рафинирование меди (см. Электрометаллургия ). Водород получают электролизом воды в относительно ограниченных масштабах, однако по мере использования запасов природного топлива и увеличения производства электроэнергии значение этого метода получения водорода будет возрастать. В различных отраслях техники применяются защитные и декоративные гальванические покрытия, а также гальванические покрытия с заданными оптическими, механическими и магнитными свойствами. Анодное растворение металлов успешно заменяет механическую обработку твёрдых и сверхтвёрдых металлов и сплавов. В технике всё шире применяются электрохимические преобразователи информации (см. Хемотроника ). Большое значение имеет скорейшее решение проблемы электромобиля . Быстро растущий спрос на автономные источники электроэнергии для техники, освоения космоса и бытовых применений стимулирует поиски новых электрохимических систем повышенной удельной мощности, энергоёмкости и сохранности. Всё более широкое распространение получают различные электрохимические методы анализа , электрофизические и электрохимические методы обработки .

107
{"b":"106437","o":1}