Истинным прорывом в прошлое стало открытие докембрийской фауны — крупных, подчас гигантских беспозвоночных, природа которых вызывает сейчас столько споров [8]. В течение последних десятилетий в составе кембрийской и более древней, вендской фауны были обнаружены животные, которые невозможно отнести ни к одному из ныне существующих типов. Несмотря на внутреннее психологическое сопротивление, первооткрывателям этих форм пришлось констатировать: в течение ранней истории животного мира существовали целые типы беспозвоночных, не нашедших продолжения. Архаическое разнообразие типов могло превосходить современное, хотя видовое разнообразие было невысоким. Как изменилась бы картина происхождения и ранней эволюции метазоа, если бы данные об эмбриональном развитии или геноме этих монстров можно было вовлечь в реконструкцию филогенеза животных?
Ряд видов вендских животных при всей их необычности представляет предковые линии кембрийских и даже современных беспозвоночных. Другие формируют четко обособленные группы, но они не находят места среди современных типов. Несомненно тканевый уровень организации, сложность строения этих организмов говорят о том, что мы имеем дело с группами весьма продвинутых и даже специализированных животных, которые, однако, прекратили свое существование уже в венде, то есть более чем 545 млн. лет назад. Возможно, физиологически эти линии беспозвоночных сформировались в условиях более древней биосферы и не смогли пережить радикальных изменений, которые претерпела глобальная среда в конце протерозоя, особенно, в венде. Какие же условия царили на Земле до начала вендского периода?
Парадоксальность актуализма или куда девались строматолиты
Актуалистические подходы к реконструкции докембрийских сред обитания зачастую приводят к неактуалистическим моделям биосферы — слишком велик интервал времени, отделяющий нас от архея и протерозоя. Примером может служить сравнение древних строматолитов и современных экосистем, контролируемых цианобактериями в себкхе или в лагунах с повышенной соленостью аридных зон. Подобные экосистемы, занимающие ныне весьма ограниченное пространство, периодически имели глобальное распространение на протяжении докембрийской, то есть большей части истории Земли. Этот пример ярко демонстрирует парадоксальность актуализма как метода познания геологического прошлого.
Исследователи строматолитов, тонкослоистых карбонатных структур, сформированных цианобактериальными сообществами, давно подметили резкий спад разнообразия и количества этих образований в истории биосферы после 1 млрд. лет назад. Это явление было истолковано как результат деятельности ранних животных, которые выедали бактериальные дерновинки и нарушали стабильность субстрата, необходимую для формирования строматолитов [9]. Прямые палеонтологические данные в пользу этой гипотезы отсутствуют — ни следов, ни остатков животных в строматолитовых отложениях докембрия пока что не обнаружено. Вероятность таких находок представляется небольшой по чисто экологическим причинам.
Существует определенный антагонизм между строматолитами и животными: там, где много строматолитов, мало или вовсе нет животных. Даже на дне, густо заселенном животными, наблюдается это противостояние — островки бактериальных матов «не пускают» животных даже в осадок — под матом царит аноксия (отсутствие кислорода), вызванная медленно разлагающимся органическим веществом. В геологической истории фанерозоя строматолиты нередко появляются во временных окрестностях экологических кризисов и массовых вымираний животных. Строматолиты — знак беды, признак дестабилизации сложных экосистем. Экологический антагонизм устойчивых цианобактериальных сообществ и беспозвоночных заставляет нас отказаться от первой гипотезы и искать другие причины упадка строматолитов.
И. Н. Крылов, один из зачинателей палеонтологии докембрия [10], предположил, что основной причиной резкого уменьшения роли строматолитов было угнетение цианобактериальных сообществ свободным кислородом, концентрация которого значительно выросла к концу протерозоя. Можно сказать, что это было самоуничтожение строматолитов. Действительно, весь кислород на планете — биогенный. На протяжении архея и значительной части протерозоя цианобактерии произвели огромный объем кислорода благодаря фотосинтезу. Значительная его кислорода ушла на окисление железа и некоторых других металлов — результатом этого процесса стали месторождения осадочных руд. После того, как основная часть железа была выведена из морской воды в осадок, кислород стал накапливаться в несвязанной форме в атмосфере и гидросфере. Таким образом, цианобактерии «отравили» атмосферу планеты продуктом своей жизнедеятельности и поплатились своей доминирующей ролью в мелководных морских экосистемах. По словам И. Н. Крылова, это была первая глобальная экологическая катастрофа. Однако «винить» только строматолитовые бактериальные сообщества в самоуничтожении было бы неверно: в производстве кислорода в протерозое все возрастающую роль стали играть эвкариотные водоросли.
Недавно М. А. Семихатов и М. Е. Раабен опубликовали серию статей [11], в которых они подвергли анализу мировые данные по строматолитам архея и протерозоя (3,8–0,545 млрд. лет). Установлена довольно сложная история цианобактериальных экосистем — на фоне растущего обилия и разнообразия строматолитов в течение архея и протерозоя было три спада, последний из которых начался около 850 млн. лет назад. Этот спад, оказавшийся фатальным, совпал с началом длительной ледниковой эры. По мнению авторов, именно климатический фактор был ведущим в элиминации строматолитовых сообществ в качестве доминант относительно мелководных бассейнов.
Следует заметить, что по мере роста концентрации свободного кислорода в атмосфере протерозойской планеты уменьшалось содержание углекислого газа. Этот фактор снижал скорость накопления биогенных карбонатных осадков, в том числе — строматолитов. Угнетающе действовало на карбонатную биоминерализацию и длительное похолодание, возможно, связанное с уменьшением парникового эффект атмосферы. Биосфера остывала.
Эра великих холодов
На протяжении большей части своей истории Земля не испытывала оледенений: ранняя биосфера была теплой, если не горячей. Первый ледниковый период зафиксирован геологами 2,2 млрд. лет назад. За ним следовал длительный период теплой биосферы вплоть до неопротерозоя, когда в течение двухсот миллионов лет (от 750 до 580 млн. лет назад) прошла череда мощных покровных оледенений. В этом интервале геологической истории зафиксировано четыре длительных ледниковых периода, но возможно их число было большим [12]. Масштабность этих событий потрясает. Льды достигали уровня моря даже на тех континентах, которые располагались вблизи экватора. Об этом свидетельствуют палеогеографические реконструкции, основанные на анализе остаточной намагниченности горных пород. Этот парадокс был отмечен Н. М. Чумаковым [13].
В последние годы получены дополнительные данные, показывающие поистине глобальный масштаб неопротерозойских оледенений. Изотопная летопись углерода из карбонатных отложений, накопившихся в периоды оледенений, демонстрирует негативные аномалии чудовищной амплитуды. Подобного не наблюдалось ни в течение предшествующих 1,2 млрд. лет, ни в ходе всей последующей геологической истории.
Сейчас, когда гипотеза об оледеневшей Земле обрела черты научной сенсации, интенсивно обсуждаются поведение различных параметров биосферы. Полагают, что каждое из оледенений могло длиться от 4 до 30 миллионов лет. В эти периоды лед толщиной почти 2 км сплошным слоем покрывал континенты и мировой океан. Биологическая продуктивность (от фотосинтезирующего планктона и далее по пищевой цепи) в поверхностных водах океана резко сокращалась на миллионы лет — обширные льды блокировали солнечный свет. Оледенения заканчивались катастрофически быстро, когда благодаря наземному вулканизму в атмосфере накапливалось высокое содержание углекислого газа, более чем в триста раз превышающее его современный уровень.