Литмир - Электронная Библиотека
Содержание  
A
A

Если все это выглядело хотя бы отчасти правдоподобным, труднопреодолимая проблема состояла в том, что единственными известными в то время носителями элементарного положительного заряда были протоны. Другого варианта объяснить, как «дырки» могли бы проявляться, в природе просто не было, однако здесь не могло не бросаться в глаза различие в массах: масса протона больше массы электрона почти в две тысячи раз. Дирак приложил усилия, чтобы показать, каким образом взаимодействие с (бесконечным) количеством электронов из моря могло бы привести к такому различию между массой частицы и дырки. Он ограничился малыми по сравнению с эм-цэ-квадрат энергиями (т. е. фактически пренебрег требованиями теории относительности), признав, однако, что над развитием высказанных им идей надо еще поработать. Тогда к обсуждению подключился Вейль – математическая фигура мирового масштаба. Он показал, что нарушить условие равенства масс между частицами и дырками невозможно по глубоким математическим причинам. Таким образом, из предложения Дирака ничего не вышло. Сам Вейль сделал отсюда вывод, что от теории «дырок в море» следует отказаться!

Веские аргументы против интерпретации дырок как протонов привел и Оппенгеймер, заметив, что если бы дело обстояло таким образом, то атом водорода быстро бы «самоуничтожился». На протяжении нескольких лет изобретение Дирака, несмотря на имевшиеся достижения, выглядело отчасти курьезным. В конце концов, в 1931 г., реакцией Дирака на возражения Вейля и Оппенгеймера стало решительное движение вперед, туда, куда вела логика формул.

Если дырка не похожа ни на что известное, то, значит, известно не все. «На бумаге» впервые появилась новая частица: «дырка» была объявлена антиэлектроном.

При его встрече с электроном происходит то самое, чего все боялись, но теперь не как массовое, а как единичное явление: электрон с положительной энергией отдает избыток энергии и заполняет дырку. Однако на фоне моря картина выглядит иначе: обычный электрон со своим обычным отрицательным зарядом и другая частица той же массы, но с положительным зарядом исчезают, а вместо них появляются фотоны, несущие энергию 2mc2.

Такой процесс в наше время хорошо известен как аннигиляция. И сейчас, говоря о ней, сразу добавляют, что аннигилируют частица материи и встречающаяся с ней частица антиматерии – ее античастица. Но вся идея античастиц и аннигиляции – вообще вся концепция антиматерии – выросла не из экспериментальных открытий, а из уравнения Дирака. Это уравнение неожиданно открыло вторую половину мира.

24

Что в поле

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - i_033.png

На упрек, что в игре ему часто просто везет, один известный гольфист однажды ответил: «Возможно. Но, знаете ли, я заметил, что чем лучше я играю, тем больше мне везет». Можно ли сказать, что Дираку «повезло»? Для решения задачи – написать релятивистское уравнение для электрона – известных средств не хватало, и он на свой страх и риск взялся придумывать новые. Но из новаторского по форме уравнения следовали и «хорошие», и «плохие» выводы. Обычно наличие «плохих» (конфликтующих с наблюдениями) приводит к закрытию всего проекта; «хороших» немного жаль, но что поделаешь – идея, значит, оказалась неверной, приходится признать поражение. Дираковский проект находился на грани закрытия из-за отрицательных энергий: если у электронов есть возможность «упасть» в состояния с такими энергиями, мир должен немедленно разрушиться.

Дирак обратил это почти поражение в победу, выдвинув почти абсурдную идею о заполненном, но ненаблюдаемом море электронов с отрицательной энергией. В числе наблюдаемых выводов отсюда оказались дырки – случаи недостачи электронов с отрицательной энергией, воспринимаемые как частицы с положительной энергией (и положительным зарядом). Придуманный таким образом антиэлектрон получил отдельное название: позитрон (от слова positive, что указывает на его положительный заряд).

Позитрон появился на бумаге как побочный продукт решения отдельной задачи, да еще с привлечением странной гипотезы, в то время, когда твердо, казалось бы, было установлено, что в природе имеются в точности две элементарные частицы, электрон и протон (даже нейтрон еще не был открыт!). Поэтому высказанное Дираком в 1931 г. предположение, что существует что-то еще, что никогда не наблюдалось, было необычайно смелым.

Далее события развивались стремительно. Позитрон был открыт экспериментально уже в августе 1932 г.; как это часто бывает, выяснилось, что следы, оставленные позитронами, наблюдались несколькими учеными и раньше, но те не придали им значения. (Кстати, в феврале того же года открыли и нейтрон.) Экспериментальное обнаружение «почти абсурдно» предсказанной частицы произвело такое впечатление, что в уже 1933-м Дирак стал нобелевским лауреатом – кстати, совместно со Шрёдингером, который свое уравнение открыл на семь лет раньше!{106}

Предсказание существования позитрона производит впечатление и теперь. Соединение двух независимых концепций – квантовой механики и теории относительности – дало знание, которое не содержалось в них по отдельности: знание об антиматерии. После теоретического появления антиэлектрона открытие других античастиц уже не представляло собой концептуальной сложности. Впечатление усиливается еще и тем, что Дираку потребовалась для этого математика, которая вовсе не лежала на поверхности{107}.

Но еще удивительнее произошедшее становится при взгляде с высоты знания, накопленного позднее. Теория дырок в море электронов с отрицательной энергией оказалась неверной или, во всяком случае, совершенно ненужной. Необоснованной оказалась и исходная мотивировка заменить уравнение Клейна – Гордона на какое-то другое, чтобы избежать отрицательных вероятностей. Как выяснилось, и уравнение Клейна – Гордона можно понимать таким образом, что отрицательных вероятностей не возникает, и в уравнение Дирака, если его понимать, как это сначала подразумевалось, отрицательные вероятности все-таки проникают.

Теория Дирака была лучшим возможным приближением к новому уровню понимания, достигнутому позднее. Она запустила процесс, который привел к грандиозному переосмыслению взглядов на фундаментальное содержание Вселенной. Отправная точка тут в том, что женитьба (словоупотребление, восходящее к самому Дираку) квантовой механики на теории относительности не позволяет квантовой механике оставаться теорией одной частицы, даже если «мы взяли всего один электрон».

Электроны и позитроны могут пропадать, аннигилируя друг с другом; их энергия и импульс, конечно, не исчезают в никуда, а достаются свету, но количество частиц интересующего нас вида тем не менее меняется. (До сих пор я для простоты говорил не об импульсе, а о скорости, и ошибки в том не было, но сейчас для точности все-таки понадобится импульс; в ньютоновской механике это просто скорость, помноженная на массу, а для фотона – его энергия, деленная на скорость света.) Возможен и обратный процесс, когда сверхсильное электрическое поле создает пары электрон – позитрон. Количество частиц не сохраняется. (Намек на то, что одним электроном не обойтись, можно было усмотреть уже в необходимости дираковского моря.)

Вместо уравнения для одной частицы потребовалась теория переменного числа частиц. Уже в 1932 г. ее основы сформулировал Фок, а также Паули совместно с Вайскопфом (в статье, которую неизменно резкий в высказываниях Паули называл «антидираковской»). Адекватная картина потребовала нового языка. В его основе лежали, во-первых, главная черта квантовой механики – комбинирование различных возможностей в волновой функции, а во-вторых, отдельное наблюдение, выражающее свойства физического мира: все частицы одного вида полностью одинаковы и, более того, неразличимы.

вернуться

106

Во второй половине 1920-х гг. Нобелевский комитет не слишком охотно отмечал премиями ключевые работы по созданию квантовой теории, и задержку с присуждением премии Шрёдингеру уже можно было называть скандальной; и уж заведомо абсурдно было бы присудить премию за уравнение Дирака, пока она не присуждена за уравнение Шрёдингера.

вернуться

107

Желая описать природу, Дирак «на ощупь» добрался до того, что оказалось частью глубокой математической истории. Спиноры для самых разных пространств были в общем известны математикам, но в весьма абстрактной постановке вопроса, без какой бы то ни было связи со свойствами окружающего мира. Значительный вклад в прояснение связи между изобретенными Дираком четырехкомпонентными сущностями и перемешиванием пространства и времени в теории относительности внес, надо сказать, Вейль, упоминавшийся в главе 23.

54
{"b":"934126","o":1}